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Abstract

There is considerable interest in identifying and locating natural forests as accurately as possible, because they are deemed essential in
preventing biodiversity loss. In the boreal region, natural forests contain a substantial amount of dead wood and exhibit considerable
variation in tree age, size, and species composition. However, it is difficult to define natural forests in a quantitative manner. This
is an issue, for example, in the Finnish national forest inventory. If naturalness could be related to the metrics derived from tree
measurements, it would be easier to locate natural forests based on the inventory data. In this study, we investigated the value of metrics
computed from tree locations and tree sizes for the characterization of a key aspect of naturalness, namely, structural naturalness as
defined in the Finnish national forest inventory. We used L-moments, Gini coefficient, Lorenz asymmetry, and interquartile range to
quantify the variations in tree size at the plot level. We summarized the spatial pattern of trees with a spatial aggregation index. We
compared the structural metrics, species proportions, and stand age using the classes of structural naturalness described in the Finnish
national forest inventory, which have been determined in the field without strict numerical rules. These categories are ‘natural’, ‘near-
natural’, and ‘non-natural’. We found that the forests evaluated as structurally natural had larger variations in tree size and species
composition and showed a more clustered spatial pattern of trees on average, although the variation in the structural metrics was
considerable in all three classes. In addition, we used the structural metrics to predict naturalness by employing a random forest
algorithm. Based on the structural metrics, it was possible to obtain high precision in the classification only if we simultaneously
accepted low recall, and vice versa; the link between the inspected metrics and naturalness evaluated in the field was weak. The stand
age separated the three classes more clearly and it also improved the classification.
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Introduction
Primary forests are rare across Europe, but their importance in
the prevention of biodiversity loss is considered high (e.g. Gibson
et al. 2011, Mackey et al. 2015). The terminology with regard
to these forests is not fully settled, and they have also been
called intact, primaeval, virgin, near-virgin, old-growth, or long-
untouched forests (e.g. McRoberts et al. 2012, Potapov et al. 2017,
Sabatini et al. 2018). The Food and Agriculture Organization (FAO)
collects information on primary forests in their global Forest
Resources Assessment and have defined primary forests as ‘nat-
urally regenerated forests of native species, where there are no
clearly visible indications of human activities, such as logging,
road construction or anthropogenic fires, and the ecological pro-
cesses are not significantly disturbed’ (FAO 2015). This definition
covers forests that exhibit a high level of naturalness, without
implying that these forests were never cleared or disturbed by
humans. A similar definition was also adopted by Sabatini et al.
(2018). The European Union define as main features of natural old
forests a considerable amount of dead wood and coarse woody
debris, a large variation in tree age, tree height, and species
composition, occurrence of trees from previous generations, and a
stable microclimate (habitat type ‘9010: Western Taïga’ of Annex

I of the Habitats Directive, https://eunis.eea.europa.eu/habitats-
annex1-browser.jsp).

According to Morales-Hidalgo et al. (2015), 202 out of 234 coun-
tries harbour some area of primary forests with the total area
reported by these countries estimated at 1277 million ha, which
is 32% of the forest area in those countries. The largest areas of
primary forests are registered in the Russian Federation, Canada,
and Brazil. In the Forest Europe report (2020), 2.2% of the total
forest area is considered untouched. Sabatini et al. (2018) searched
available data sources, such as descriptions in journal articles,
existing maps, and questionnaires to experts, and estimated that
primary forests cover 1.4 million ha in 32 countries, which is 0.7%
of the forest area in Europe.

Because of their importance, it is critical that primary forests
are identified and located as accurately as possible. To facilitate
the identification and mapping of natural forests, there is an
urgent need for a general formulation of the concept of ‘forest
naturalness’ (Brumelis et al. 2011). Brumelis et al. (2011) identified
three dimensions according to which naturalness can be for-
mulated: (i) structure-based, (ii) species-based, and (iii) process-
based concepts. Of these, the structural concept is most promis-
ing from the viewpoint of locating natural forests using remote
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sensing-based forest resource data. The structural variables of
interest include old trees, variation in tree species composition,
occurrence of large deciduous trees, multi-layered and multi-aged
tree canopies, dead wood of varying sizes and decay stages, as
well as signs of natural disturbances (fire, wind, insects, and fungi)
(Brumelis et al. 2011). The use of species-based definitions is diffi-
cult as identification of species (e.g. bracket fungi) is problematic
with field measurements, and impossible with remote sensing
methods. Even the identification of the tree species that occur in
the area is very uncertain with remote sensing. The process-based
concept involves concentrating on the dynamics that have led to
the current state.

Many of the metrics available from commonly measured field
inventory data, such as occurrence of multiple height layers, are
important structural variables, but some relevant variables are
typically missing. For instance, age is not usually measured for
all trees, and often only a mean age is available, as tree age
measurements are too expensive and, moreover, are prohibited on
permanent sample plots. Therefore, instead of multiple age layers,
it is only possible to address the variability associated with stem
diameter. Signs of natural disturbances may also be lacking from
the measurements commonly taken in the field.

National forest inventories (NFI) are the most comprehensive
and extensive operationally available data sets for the assessment
of naturalness (McRoberts et al. 2012). In the Finnish NFI, the
naturalness of a forest is assessed visually in the field according
to three criteria: (i) the structure of the forest, (ii) the amount and
composition (continuum) of dead wood, and (iii) signs of human
activities. For each variable, the level of naturalness is determined
at three levels or classes. According to the 11th Finnish NFI, with
data collected in 2009–13, the area of productive forest that ful-
filled these criteria was 517 000 ha or 2.5% (Korhonen et al. 2017),
and according to the 12th Finnish NFI (NFI12), with data collected
in 2014–18, the area was about 380 000 ha or 1.9% (Korhonen
et al. 2021). In the analysis by Sabatini et al. (2018), Finland had
the greatest proportion of primary forest in Europe (0.9 million
hectares, ∼3% of the national territory).

The variation across the consecutive NFI may be partly because
of the absence of unambiguous definitions for the three criteria
that define naturalness, as substantial changes have also been
noted in conservation areas. In the Finnish NFI, naturalness based
on structure is defined to exhibit, for example, large variation
in tree size, as well as a random spatial pattern, but without
numerical rules that define what should be interpreted as large
variation. This is partly because the internal variation of natural
forests (because of site type and dominant species) is consider-
able. However, ambiguous definitions also give room to subjec-
tive considerations, which makes the results harder to interpret
and use.

The aim of this study was to determine whether the level
of forest structural naturalness, as defined and assessed in
the field in the Finnish NFI, varies according to the variables
of forest structure computed from NFI field measurements. A
better modelled relationship between structural naturalness
and the structural variables (tree diameter and height, or
other field measurements) will lead to more informative and
unambiguous definitions in the NFI. If the relationship between
the variables computed from tree measurements and the
structural naturalness is vague, then there is a clear need to
reformulate both the definitions and the NFI measurements. The
need to improve the definitions in the NFI and the potential effect
of deficiencies in the currently used definitions on policies is
discussed.

Materials
We used tree- and plot-level data from the Finnish NFI (2018–
20). The 2018 data were part of NFI12, and the 2019–20 data
were part of 13th NFI (NFI13). For each plot, diameter growth at
breast height (dbh) was measured for all tally trees, and height for
all sample trees (a subset of tally trees). Heights of non-sample
trees and upper diameter at 6 m for all trees were predicted as
described in Korhonen et al. (2021). Stem volume for each tree
was predicted using the species-specific three-predictor volume
models proposed by Laasasenaho (1982). We only considered such
plots in forest land that were completely located within a single
stand and contained at least five trees with measured dbh > 4.5
cm and either measured or predicted height. As we only analyzed
the structure of standing trees, fallen dead trees or tree stumps
were not included. Stand age was defined as the average age of
the dominant tree storey (crown layer) of the stand where the plot
was located. Age was measured with an age borer on a few trees
at breast height (1.3 m), and the total age was obtained by adding
species and region-specific age increment values that represent
the time it takes for a tree to reach breast height.

Circular plots were used in both NFI12 and NFI13. Trees with
dbh ≥ 9.5 cm were measured within a circle of 9 m radius,
whereas trees with dbh and ≥ 4.5 < 9.5 cm were measured
within a 5.64 m radius in NFI12 or a 4 m radius in NFI13. In our
analyses, we ignored trees with dbh < 4.5 cm, which were sampled
with a relascope. The unequal inclusion probabilities introduce
weightings for trees with a different dbh. The weight assigned to
tree k was wk ∝ 1/rk

2, where rk is the radius from which tree k was
sampled.

Of the three criteria used to define naturalness in the Finnish
NFI (see above), this study concentrated on the structure of the
forest, which is divided into three classes as follows:

• Natural (class 0) forests are virgin forests or forests that are
close to their natural state. The trees should have random
spacing and variable size, and the canopy cover should have
several vertical layers. Trees of several generations should be
present, and the dominant tree stratum should have achieved
at least silvicultural maturity age (i.e. fulfilling the recom-
mended species and site-specific age limit for final cutting,
Äijälä et al. 2019). In forests close to a natural state, there may
be some signs of previous selective cuttings, which should not
have markedly changed the tree spacing and species com-
position. In addition, forests that have regenerated naturally
after the occurrence of natural damage (e.g. forest fire or
storm) are assigned to class 0 regardless of the stand age, in
cases when (i) the damaged stand had reached maturity, and
(ii) the damaged trees have not been harvested.

• Near-natural (Class 1) forests have regenerated naturally, but
their structure and spacing have been changed by slight
thinning or selective cutting.

• Non-natural (Class 2) forests are, in general, evenly spaced
and even-aged, and the forest structure is formed by artificial
regeneration or cutting. All planted forests belong to this
class, even if they are unevenly structured or unmanaged.

For our analyses, we considered data from three parts of Fin-
land, as depicted in Fig. 1. The division was carried out with
respect to latitude, because of both the inherent variation in
Finnish forests and the amount of natural forests found along
the north–south gradient. The northern study region (hereafter
called the North region) represents Finnish Lapland, excluding
Northern Lapland, which was not measured in 2018–20. The
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Figure 1. Three geographical regions of Finland utilised in the study. The
North region represents Lapland, excluding Northern Lapland, the
Central region is composed of North Ostrobothnia and Kainuu, and the
South region is the remainder of the country.

Table 1. Summary of the number of plots in the three
naturalness classes (0 = natural, 1 = near-natural,
2 = non-natural) in the three regions of Finland shown in
Figure 1.

Region n Naturalness class

0 1 2

North 1473 223 113 1137
Central 2335 70 142 2123
South 6748 66 392 6290

central study region (hereafter called the Central region) consists
of North Ostrobothnia and Kainuu, and the remainder of Fin-
land was the southern study region (hereafter called the South
region). On the basis of a visual assessment of structure, the
North region contained the most structurally natural plots (62%
of the structurally natural plots included in this study, Table 1)
and the Central region contained more than half of the remaining
structurally natural plots. Summary of the plots with respect to
the other two naturalness criteria can be found in Table S.1 in Sup-
plementary Material. Hereafter naturalness refers to structural
naturalness only.

We hypothesized that, in addition to the geographical loca-
tion, the structural properties of natural and non-natural forests
may differ with respect to site conditions and the dominant tree
species or species groups. Therefore, we considered the variation
because of soil type (mineral land or peatland) and site type (rich
or poor sites), as well as the variation because of dominant species.
Here, rich site types included forest stands that ranged from mesic
to herb-rich sites on mineral land and peatlands that ranged from
mesotrophic to eutrophic mires; poor site types included forests
that ranged from sub-xeric to barren sites on mineral land and

peatlands that ranged from oligotrophic to ombrotrophic mires.
With regard to dominant species, we used three groups: (i) conifer-
dominated stands where the number of conifers exceeded 67%, (ii)
broadleaved-dominated stands with more than 67% broadleaved
trees, and (iii) mixed stands.

In the North region, natural forests were most common in
mixed stands on mineral land: 31% of mixed stands were natural
on poor mineral land, 25% on rich mineral land, as well as 25%
of broadleaved stands growing on rich mineral land. However,
almost all broadleaved and mixed stands on poor peatlands were
non-natural (Table S.2). In the Central region, natural forests were
most common in conifer stands on rich peatland (6.5%) and in
mixed stands on poor mineral land (6%). In the South region,
the proportion of natural forests was greatest in mixed stands
on poor mineral land, although the proportion was even lower
(3.4%). In the Central and South regions, none of the broadleaved-
dominated stands on poor sites were natural, and neither were
any of the mixed stands on poor peatlands or broadleaved stands
on rich peatlands.

We also investigated the number of stands according to their
development class (Table S.3). The development class describes
the developmental phase of the growing stock in relation to
the expected rotation determined in the field (Tomppo et al.
2011). Natural forests were mainly assigned to the development
classes that represented young thinning stands, advanced thin-
ning stands or mature stands (Table S.3). Here a young thinning
stand indicates that the first commercial thinning has not yet
been performed. In the advanced thinning stands, the growing
stock is older and the trunk size is larger. The growing stock of
a mature stand is either old or is considered sufficiently large for
a regeneration cutting from a management point of view.

Methods
We compared the natural (0), near-natural (1), and non-natural
(2) plots using several indices that characterized the structure
of the stand based on the size and location of the trees.
To characterize the shape of the size distributions, we used
L-moments (mean, L-scale, L-skewness, L-kurtosis), the Gini
coefficient, the Lorenz asymmetry (LA) coefficient, and the
interquartile range (IQR). We considered these indices for dbh
(cm), basal area (dm2), height (m), and volume (dm3) of the trees
in the sample plot. To summarize the spatial pattern of the
trees, we used a traditional aggregation index based on nearest
neighbour distances (Clark and Evans, 1954). We further inspected
stand age, total volumes, and species proportions, as specified
below.

The IQR is the simplest of the structural variables tested as it is
the difference between the low (25%) and high (75%) quartiles of
the variable of interest. Because the trees of different sizes had
different inclusion probabilities, we used a weighted version of
IQR from the R (R Core Team 2021) package DescTools (Signorell
et al. 2022).

The main advantage of L-moments over conventional moments
is that they are more robust to outliers in the data, and they
enable more secure inferences about the underlying probability
distributions based on small sample sizes (Hosking 1990). The
L-moments defined by Hosking (1990) are

Lr = r−1
r−1∑
k=0

(−1)k

(
r − 1

k

)
EXr−k:r (1)
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where Xr−k:r is the (r–k)th-order statistic of the variable X in a
sample of size r. The first four L-moments are

L1 = EX (2)

L2 = (EX2:2 − EX1:2) /2 (3)

L3 = (EX3:3 − 2EX2:3 + EX1:3) /3 (4)

L4 = (EX4:4 − 3EX3:4 + 3EX2:4 − EX1:4) /4 (5)

L1 is more conventionally the mean and L2 is the scale. The
ratio L3

L2
is L-skewness, and the ratio L4

L2
is the L-kurtosis. According

to Hosking (1990), the rth sample moment of x1, . . . , xn can be
estimated by

lr =
( n

r

)−1∑
· · ·

∑
1≤i1<i2<···<ir≤n

r−1
r−1∑
k=0

(−1)k
(

r − 1
k

)
x(ir−k)

where x(i) is the ith-order statistics of x. Because of unequal
inclusion probabilities, we used the following weighted version of
(6) as the estimator of the rth sample moment

lr =
⎛
⎝ ∑

1≤i1<i2<···<ir≤n

r∏
k=1

w(ir−k)

⎞
⎠

−1 ∑
1≤i1<i2<···<ir≤n(

r−1
r−1∑
k=0

(−1)k
(

r − 1
k

)
x(ir−k)

) (
r∏

k=1

w(ir−k)

)

where w(i) are the weights associated with the order statistics x(i).
Here, we weighted each r-tuple of statistics x(i) by the product of
their weights.

For a continuous variable X, the Gini index is defined through
the distribution function F(x) and its expectation μ

G = 1
μ

∫ ∞

0
F(x) (1 − F(x)) dx (7)

The Gini coefficient is a measure of inequality. For non-negative
random variables, it is related to the L-moments by G = L2/L1. We
used the R package dineq (Schulenberg 2018) for the calculation of
the weighted Gini coefficient. Interpretation of the Gini coefficient
has been discussed, for example, in Wittebolle et al. (2009) and
Valbuena et al. (2012).

We further calculated the LA coefficient according to Valbuena
et al. (2013). Let dQMD be the weighted quadratic mean diameter
in a plot with n trees with dbh dk, k = 1, . . . , n, and associated
weightings wk, i.e.

dQMD =
√√√√ n∑

k=1

wkd2
k/

n∑
k=1

wk (8)

Furthermore, let

D
(
xQMD

) =
∑n

k=1 1
(
dk > dQMD

)
wk∑n

k=1 wk
,

M
(
xQMD

) =
∑n

k=1 1
(
dk > dQMD

)
wkπd2

k∑n
k=1 wkπd2

k

(9)

be the proportions of the basal area and the stem density of the
trees with dk > dQMD from the totals. Then, LA is the average of
these two proportions

LA = (
M

(
xQMD

) + D
(
xQMD

))
/2 (10)

We used the aggregation index R (Clark and Evans 1954) as a
measure of clustering or regularity of the pattern of the trees.
We calculated this index for trees with dbh ≥ 9.5 cm that were
observed within the 9 m radius plots. This was carried out as
we assumed that the spatial distribution of larger trees would
be more indicative of naturalness, and on the other hand, we
are also not aware of a weighted estimator of R. Index R is the
ratio of the observed mean nearest neighbour distance in the tree
pattern to that expected for a Poisson point process of the same
intensity. We estimated the R index using a Kaplan–Meier type of
edge correction as implemented in the R library spatstat (Baddeley
et al. 2015). In theory, the aggregation index can obtain values
between 0 and 2.1491. A value R > 1 suggests regularity, whereas
R < 1 suggests clustering. We chose the index R, which is based on
nearest neighbour distances, because it is not possible to evaluate
clustering or regularity at large inter-tree distances based on the
rather small NFI sample plots. In total, there were 307 plots (0
natural, 9 near-natural, and 298 non-natural) where R could not
be estimated with the chosen edge correction. These cases were
omitted from the distribution graphs in the Results section. For
the random forest (RF) algorithm, their value was set to 1, which
corresponds to the case of complete spatial randomness.

We first investigated the distributions of the different indices
within the naturalness classes and site conditions. Second, we
used the RF algorithm (Breiman 2001) as implemented in the R
package randomForest (Liaw and Wiener 2002) to investigate how
well the indices, together with site conditions, could assign forest
stands to the naturalness classes. In addition to the indices, as
explanatory variables in the RF algorithm, we added: the total
basal area in the plot; total basal area and proportions of small
(dbh < 15 cm) and large (dbh > 30 cm) trees; proportions
of various species groups (spruce, pines, conifers, broadleaved);
and optionally stand age. Then, we separately carried out the
classification with the RF algorithm and the selected variables
for the three regions shown in Fig. 1. For comparison, we also
tested it for the whole country, without any regional information.
Our dependent variable had only two classes: (i) we combined
the near-natural forests either with the non-natural forests and
tried to predict the natural forests, or (ii) we combined it with the
natural forests in an attempt to predict ‘natural or near-natural’
forests. We randomly selected 75% of the plots to train the RF
algorithm and the remaining 25% were used for validation. The
data were split separately for both response classes. We report the
average results from a 100 train-test splits of the data. We used
the variable selection using random forests (VSURF) (Genuer et al.
2015) to evaluate the importance of the variables. Namely, for each
variable, we computed the number of train-test splits where that
variable was selected by VSURF.

We used different metrics as measures of goodness of predic-
tions. All of these metrics can be derived from the numbers of true
positives (TP), true negatives (TN), false positives (FP), and false
negatives (FN), as well as the true numbers of positives (P) and
negatives (N) with P + N giving the total number of observations.
We inspected the rather classical metrics; overall accuracy TP+TN

P+N ,
Cohen’s kappa and F1-score, as well as precision and recall. The
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precision (or user’s accuracy) is the proportion of correct classi-
fication in the group that was classified as positive, TP

TP+FP , i.e. the
proportion of natural plots amongst the plots classified as natural.
The recall (or producer’s accuracy) is the proportion of correct
classification in the group of real positives in the data, TP

TP+FN , i.e.
the proportion of natural plots classified as natural. The F1-score
is the harmonic mean of precision and recall, with 1 indicating
perfect precision and recall, and 0 being the lowest possible value.

We inspected the above metrics for the default class pre-
dictions given by the randomForest package. For more accurate
analyses, the RF algorithm also provides the class probabilities. By
default, a prediction is classified to the target group (natural) if the
class probability is larger than the cut-off value of 0.5. However, in
an imbalanced situation, the choice of the cut-off is not obvious
and a powerful solution is instead to consider all possible cut-
offs (e.g. Saito and Rehmsmeier 2015). Thus, we computed the
precision and recall for the cut-offs of unique class probabilities
between 0 and 1, each cut-off providing different TP, TN, FP, and
FN values and thus different precision and recall values.

Results
The Gini coefficient of basal area (G < 0.5) suggests a slight
tendency of non-natural plots to be even-aged, and the tendency
of the natural and near-natural plots to be irregular or have
a reverse J distribution type (G ≈ 0.5, according to Valbuena
et al. 2016) (Fig. S.1 in Supplementary Material). In the North and
Central regions (see Fig. 1), the near-natural group seemed to lie
between the other two groups, whereas in the South region, the
Gini coefficient values in the natural and near-natural groups
seemed to coincide, and the non-natural group was more distinct
with lower Gini values. However, the range of the Gini coefficients
associated with dbh, basal area, height, and volume in each group
overlapped notably (Fig. S.1). This means that it was possible to
distinguish only the most even-aged plots as non-natural, but
most plots were somewhat irregular, which made identification
based on the Gini coefficient very uncertain.

The IQR distributions in the natural, near-natural, and non-
natural NFI sample plots overlapped in a similar manner to those
of the Gini coefficient (Fig. S.2). There was a slight tendency in the
natural plots to have a higher IQR, although each group exhibited
a wide range of values.

The L1 moments indicated that the largest mean dbh, basal
area, height, and volume values occurred slightly more often in
the natural plots in all regions (Fig. S.3). The differences between
the groups were clearer in the L2 moment (L-scale): the vari-
ation was larger in the natural plots (Fig. 2). The near-natural
group seemed to lie within the other two groups, even though
the distributions of L2 in some cases almost coincided with the
natural and near-natural groups. With regard to L-skewness, the
groups differed only slightly in the North region (Fig. S.4), and
the differences in L-kurtosis distributions were negligible (Fig. S.5).
Overall, the ability of L-moments (L2) to separate the classes was
comparable to that of the Gini coefficient and the IQR.

The distributions of the LA coefficients were similar in all
naturalness groups in all three regions (Fig. S.6). However, the
aggregation index R again showed some patterning, even though
the R values also had considerable variability in each group (Fig.
S.7). In any case, the non-natural plots showed a slight tendency
towards regular spatial arrangement of trees and the natural plots
towards a clustered spatial arrangement. In the Central and South
regions, the natural and near-natural groups were somewhat
similar with respect to their R value distributions.

We hypothesized that the lack of structural variation between
the groups was partly because of the site type, which represents
the different fertility classes that support the various types of
tree populations. As such, the poorest sites were often pine-
dominated and the rich sites usually had a more variable tree
species composition. Therefore, we further inspected the Gini
coefficient with respect to the dominant species groups (Fig. S.8)
and the soil (mineral or peatland) and site (poor or rich) types (Fig.
S.9). The naturalness groups seemed to differ most clearly in the
broadleaved dominated stands located in the North and South
regions. However, there were only three natural broadleaved dom-
inated stands in the Central region, and four in the South region,
in comparison to 37 in the North (Table S.2). With regard to soil
and site types, the differences between the groups seemed more
prominent in the mineral soil.

The natural forests were assumed to exhibit large variation
in tree species composition, in addition to structural variation,
but the observed differences between the natural, near-natural,
and non-natural forests in the NFI plots was also small in this
respect. The plots where the recorded tree species were solely
conifer (0% broadleaved) had a slightly greater probability of being
non-natural than the others, but in other respects there were no
clear differences between the groups (Fig. S.10). We also inspected
the number of trees with dbh < 15 and > 30 cm and observed that
their proportions were somewhat greater in natural than in non-
natural forests (Fig. S.11). This was also reflected by the IQR and
associated variation (L-scale), which were somewhat larger in the
natural plots.

The differences between the naturalness groups were more
prominent with respect to stand age (Fig. 3). The natural forests
were older, and across all three regions, about 23% of natural
forests were older than 200 years, whereas the corresponding
proportions in near-natural and non-natural forests were less
than 3% and 0.2%, respectively. This meant that 72% of forests
older than 200 years were natural. Furthermore, the proportions
of natural, near-natural, and non-natural forests greater than
150 years were 60%, 13%, and 1%, respectively.

We then used the RF algorithm to classify the plots as natural
(or natural or near-natural) using all the above-mentioned indices,
as well as site variables. We carried out the same analyses with
and without stand age. Predicting a plot as natural if its class
probability was larger than the default cut-off 0.5, the overall
accuracy was always rather high (>0.82 in all cases, see Table S.4),
as the proportion of the natural plots was rather low. However,
Cohen’s kappa and the F1-score were rather low: in the North
region, for example, the F1-score varied between 0.41 and 0.72,
whereas in the Central and South regions, it was close to 0 when
predicting the natural group without stand age, while it increased
to between 0.03 and 0.24 when stand age was included or when
the near-natural plots and natural plots were combined.

The trade-off between recall and precision for all possible cut-
offs is shown in Fig. 4. As with the basic metrics, classification
worked better in the North region than in other regions (higher
precision for a given recall) and also worked better if the group
to be predicted consisted of both natural and near-natural plots
(see solid and dashed lines in Fig. 4). Furthermore, the inclusion
of stand age in the set of predictions clearly improved the results
(see red and blue lines in Fig. 4).

Figure 4 is indicative of how the results could be used: let us
assume that in the North region, one would like to find 75% of
the natural plots (recall 0.75). This could be reached, but only if
we accept that about 38% of plots classified as natural were non-
natural (precision 0.62). To find 75% of the natural or near-natural

D
ow

nloaded from
 https://academ

ic.oup.com
/forestry/article/97/3/339/7344706 by guest on 01 August 2024



344 | Myllymäki et al.

Figure 2. The second L-moment in the NFI plots in the three naturalness groups and regions shown in Figure 1.

plots, the proportion of non-natural plots assigned to the target
group (natural or near-natural) was lower (25%). The proportion
of forests predicted as natural (19% or 23% when near-natural
was also included) was close to the true proportion (15% or 23%,
Table 1). The classification worked less successfully in the Central
and South regions. For example, in the South region, combining
the near-natural and natural plots, using stand age (the best case),
and classifying 50% of the natural plots as natural (recall 0.5)
meant accepting that 69% of the plots classified as natural were
non-natural (precision 0.31) and predicting 11% of forests to this
category even though the correct proportion was 6.8% (Table 1).

The most important indices in the VSURF classifications are
shown in Fig. 5 when the predicted class consisted of natural
and near-natural plots. Stand age was clearly the most important
predictor in all cases. It was chosen by VSURF in each of the 100
train-test splits. In the South region and for the whole of Finland,
no other indices were chosen more than five times. In the North

region, the proportion of pines and the total basal area of trees
with dbh > 30 cm were the top predictors after stand age. In
addition, the proportion of spruce and the L2-moment of the dbh
and basal area distributions were important predictors as they
were chosen more than 25 times. In the Central region, the total
basal area of the plot, number of trees with dbh < 15 cm, and
the aggregation index R were found to be the most important
predictors after stand age.

Discussion
The distributions of the NFI plot structural variables of natural,
near-natural, and non-natural forests were surprisingly similar,
irrespective of the variables tested. The natural plots had greater
variability in tree size, greater proportions of broadleaved trees,
and more clustered pattern of trees on average, but the variability
was high in all groups leading to large overlaps in the value ranges
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Figure 3. Stand age (years) in the three naturalness groups and regions shown in Figure 1.

of the three classes. The groups were, however, notably different
with respect to stand age, with the natural forests much older. In
classifying the forests as natural and non-natural (as defined in
the Finnish NFI) through the NFI tree measurements carried out in
the field, there was a clear trade-off between recall and precision:
it was possible to find a substantial proportion of the natural (and
near-natural) forests (high recall), but only when we accepted that
many non-natural plots also had to be assigned to the natural
class (low precision). In the North region, the classification results
using the RF algorithm were sufficiently good to be considered
operationally useful, particularly when stand age was also used
as a predictor. In contrast, classification in the Central and South
regions was poor.

Because of the small amount of natural plots in the prediction
data set, it can be preferable to adjust the cut-off value to the
user’s needs. On one hand, the greater the number of non-natural
plots that are classified as natural (high FP, low precision), then
the larger the proportion of natural forests found (high recall). On
the other hand, if the number of FP is required to be small, then
only a small proportion of natural plots are found (low recall).
Thus, the users can choose between (i) finding a large proportion
of natural forests with the increased cost of checking a lot of FP in
the field, or (ii) not undertaking field checks with the cost of not
finding all the natural forests. For example, in the North region,
the requirement to find 75% of natural plots was possible, but only
if we accepted that about 38% of the plots classified as natural
could be non-natural (or near-natural). The percentage of forests
predicted as natural was 19%, close to the true proportion, 15%
(Table 1).

It is notable that Uotila et al. (2001) observed statistically signif-
icant differences between natural and managed forests in regard
to both age and diameter distributions, but not with regard to the
proportions of broadleaved trees. Their plots were 900–2500 m2

in size, in comparison to our 254 m2. One obvious reason for our
results may be the small size of the NFI plots. It is possible that

a larger plot size would enhance the performance of the classifi-
cation (e.g. Häbel et al. 2019, and references therein). In general,
increasing the radius of the NFI plots is not feasible because of
the cost (e.g. Henttonen and Kangas 2015, Häbel et al. 2019), but
it could be possible to improve the classification, for instance, by
measuring exceptionally large trees from a larger area, such as
a 20-m radius plot. In contrast, stand age was evaluated at the
stand level not at the plot level, which may have facilitated its
importance in the RF algorithm classification. Naturalness was
also evaluated at the stand level in the field.

Another possibility is that naturalness is mainly assessed in
the field based on information other than the spatial pattern of
the trees and tree size distribution. In particular, the occurrence
of very old trees, or trees of previous generations, is likely to be
regarded as an important signs of naturalness by the field group.
While tree-level age information is not currently measured, this
is reflected by stand age in our study. Moreover, features such as
scars because of fire or other natural hazards may have triggered
the field groups to assess the plot as natural. Information on such
characteristics was not available in this study, as they are cur-
rently not recorded in NFI field measurements; only the classifica-
tion is recorded. Therefore, in the future, it is important to improve
data collection in such a way that the properties that the field
group use in assessing naturalness is duly recorded and used in
the future development of measurement guidelines. This requires
obtaining feedback from the field groups on the metrics that
they have utilized in their assessment, as well as the inclusion of
such indicators in future field measurements. Moreover, it would
be useful if the recorded information also included details as to
whether (or not) the classification was affected by, for example,
trees from the previous generation outside the plot or by signs of
non-naturalness, such as the existence of roads in the vicinity of
the plot.

Previous studies have noted that the capture of a spatially
clustered structure is affected by the selected minimum stem
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Figure 4. The average precision-recall curve of the RF algorithm classifications in the 100 test sets in the three regions shown in Figure 1 and for the
whole of Finland, when the predicted class consisted of (i) natural (solid lines), (ii) natural and near-natural plots (dashed lines), and when stand age
was either included or excluded in the set of explanatory variables.

diameter (Häbel et al. 2019), and the larger the minimum diam-
eter the more likely the stands will be regular. In this study,
when considering the spatial structure, we ignored the smallest
trees that might be clustered in all types of forests and instead
calculated the spatial aggregation index for trees with a mini-
mum diameter of 9.5 cm. The applied index had some success
in predicting naturalness in the Central region, as measured by
VSURF. Assessment of the effect of the spatial patterning could
also benefit from larger plot sizes. Recording a (visually assessed)
classification of the NFI plots as random, clustered, or regular
stands during field measurements might also give further insights
into the potential importance of spatial point pattern variables in
assessing naturalness of forests in the field.

A final explanation for the relatively low success of structural
metrics in detecting field assessed naturalness may lay in its
subjective assessment. It is possible that the field group may be

looking at different structural metrics in different types of stands.
It may also be that different field groups pay attention to slightly
different aspects in the forest. Recording all the criteria that affect
the classification made in the field would help to understand the
dependencies between classification, stand qualities, and struc-
tural metrics, as well as the combined effects of the different
characteristics. For instance, spatial randomness combined with
large tree volumes might be more important than either variable
on its own. It is possible that the large variation in previous
NFI results is—at least partly—related to subjectivity, and such
analysis would also help in characterizing and quantifying this
subjectivity. It could be also valuable, though costly, to study the
variability between field groups by measuring the same plots by
more than one group. This information could be used to provide
more detailed guidelines for the field groups, in order to have a
consistent classification.
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Figure 5. The number of times a variable was selected by VSURF in the 100 train sets in the three regions shown in Figure 1, as well as for the whole of
Finland when predicting the group ‘Natural or near-natural’. Variables selected less than 5 times were not included. Here ‘ba’ stands for the basal area
of a tree and ‘BA’ is the stand basal area.

There is considerable interest in predicting forest naturalness
or structural metrics from remote sensing data (e.g. Ørka and
Naesset 2022), in order to help in local decision-making with
regard to the prevention of biodiversity loss. Our results show
that even if we were able to map, for instance, the Gini coefficient
accurately, the produced map would not directly represent
naturalness. From a forest management point of view, however,
the possibility of accurately locating forests with the largest
structural variability may be valuable as such. This information
could be used, for instance, in selecting such forest stands
that can be restored to a natural class given sufficient time.
Classification based on age might be more related to actual
naturalness, but unfortunately stand age is a difficult variable
to predict from remote sensing (e.g. Maltamo et al. 2020, Ørka
and Naesset 2022), particularly in old forests, as the development
of height and volume of the stands stabilizes with increasing
age. Maltamo et al. (2020), for instance, removed all stands older
than 100 years from their data set as it was impossible to predict
the age in these stands with airborne laser scanning data. On
the other hand, remote sensing data can contain other relevant
information, e.g. with regard to canopy cover and gap-based
indicators (e.g. Häbel et al. 2021), which may proof useful to
separate natural and non-natural forests.

Conclusion
Our analysis shows that it is a considerable challenge to deduce
structural naturalness as defined in the Finnish NFI, based on
indices of tree sizes and tree locations only. Trees in natural forests
were on average more clustered and exhibited a larger variation
in size than non-natural forests, but the distributions of all the
studied structural metrics overlapped considerably. The small

sample plot size may partly explain these results. Stand age was
a clearly better indicator of naturalness. Our results revealed that
it is necessary to improve the way that naturalness is recorded in
the field, both from the perspective of more reliable mapping of
natural forests and from the perspective of improving the quality
of NFI naturalness assessments.

Author contributions
Mari Myllymäki (Conceptualization, Formal analysis, Writing—
review & editing), Sakari Tuominen (Conceptualization, Writing—
review & editing), Mikko Kuronen (Conceptualization, Formal
analysis, Writing—review & editing), Petteri Packalen (Concep-
tualization, Writing—review & editing), and Annika Kangas
(Conceptualization, Writing—original draft, Writing—review &
editing)

Supplementary data
Supplementary data are available at Forestry Journal online.

Conflict of interest
None declared.

Funding
This work was supported by funding from the Ministry of Agri-
culture and Forestry in Finland [Research grant VN/22626/2020
(PLUS)] and the Research Council of Finland’s flagship pro-
gramme, the Forest-Human-Machine Interplay (UNITE) flagship
(Grant numbers 337655 and 357909) and by the European

D
ow

nloaded from
 https://academ

ic.oup.com
/forestry/article/97/3/339/7344706 by guest on 01 August 2024

https://academic.oup.com/forestry/article-lookup/doi/10.1093/forestry/cpad053#supplementary-data


348 | Myllymäki et al.

Union—NextGenerationEU in the Research Council of Finland’s
project (Grant number 348154) under UNITE.

Data availability
The authors do not have permission to share the original NFI
data. The processed data used in this article will be shared on
reasonable request to the corresponding author with permission
of Natural Resources Institute Finland (Luke).

References
Äijälä O, Koistinen A, Sved J, Vanhatalo K, Väisänen P. (eds.)

Metsänhoidon Suositukset. Tapion julkaisuja, 2019. https://tapio.
fi/wp-content/uploads/2020/09/Metsanhoidon_suositukset_
Tapio_2019.pdf.

Baddeley A, Rubak E, Turner R. Spatial Point Patterns: Methodology and
Applications with R. London: Chapman and Hall/CRC Press, 2015.

Breiman L. Random forests. Mach Learn 2001;45:5–32. https://doi.
org/10.1023/A:1010933404324.

Brumelis G, Jonsson BG, Kouki J. et al. Forest naturalness in northern
Europe: perspectives on processes, structures and species diver-
sity. Silva Fennica 2011;45:807–21. https://doi.org/10.14214/sf.446.

Clark P, Evans F. Distance to nearest neighbor as a measure of spatial
relationships in populations. Ecology 1954;35:445–53. https://doi.
org/10.2307/1931034.

FAO. Global Forest Resources Assessment 2015. Terms and defini-
tions. In: Forest Resources Assessment Working Paper 180. Rome: FAO,
2015; 36.

Forest Europe. State of Europe’s Forests 2020. 2020. https://
foresteurope.org/wp-content/uploads/2016/08/SoEF_2020.pdf
(Accessed 30 October 2023)

Genuer R, Poggi JM, Tuleau-Malot C. VSURF: an R package for vari-
able selection using random forests. R J 2015;7:19–33. https://doi.
org/10.32614/RJ-2015-018.

Gibson L, Lee TM, Koh LP. et al. Primary forests are irreplaceable for
sustaining tropical biodiversity. Nature 2011;478:378–81. https://
doi.org/10.1038/nature10425.

Henttonen HM, Kangas A. Optimal plot design in a multipurpose
forest inventory. For Ecosyst 2015;2:31. https://doi.org/10.1186/
s40663-015-0055-2.

Hosking JRM. L-moments: analysis and estimation of distri-
butions using linear combinations of order statistics. J R
Stat Soc B Methodol 1990;52:105–24. https://doi.org/10.1111/
j.2517-6161.1990.tb01775.x.

Häbel H, Kuronen M, Henttonen HM. et al. Effect of spatial struc-
ture of forests on the accuracy and costs of plot-level forest
resource estimation. For Ecosyst 2019;6:8. https://doi.org/10.1186/
s40663-019-0167-1.

Häbel H, Balazs A, Myllymäki M. Spatial analysis of airborne laser
scanning point clouds for predicting forest structure. Math Comp
For Nat Resour Sci 2021;13:15–28. http://mcfns.net/index.php/
Journal/article/view/13.2/2021.

Korhonen KT, Ihalainen A, Ahola A, Heikkinen J, Henttonen HM,
Hotanen J-P, Nevalainen S, Pitkänen J, Strandström M, Viiri H.
Suomen metsät 2009–2013 ja niiden kehitys 1921–2013. (Forests
of Finland 2008–2013 and their development in 1921–2013).
Luonnonvara- ja biotalouden tutkimus 2017;59. http://urn.fi/
URN:ISBN:978-952-326-467-0.

Korhonen KT, Ahola A, Heikkinen J. et al. Forests of Finland 2014–
2018 and their development 1921–2018. Silva Fennica 2021;55:49.
doi.org/10.14214/sf.10662.

Laasesenaho, J. Taper curve and volume functions for pine, spruce
and birch. Communicationes Instituti Forestalis Fenniae 1982, 108.
http://urn.fi/URN:ISBN:951-40-0589-9.

Liaw A, Wiener M. Classification and regression by random Forest. R
News 2002;2:18–22.

Mackey B, DellaSala DA, Kormos C. et al. Policy options for the world’s
primary forests in multilateral environmental agreements. Con-
serv Lett 2015;8:139–47. https://doi.org/10.1111/conl.12120.

Maltamo M, Kinnunen H, Kangas A. et al. Predicting stand age
in managed forests using National Forest Inventory field data
and airborne laser scanning. For Ecosyst 2020;7:44. https://doi.
org/10.1186/s40663-020-00254-z.

McRoberts RE, Winter S, Chirici G. et al. Assessing forest naturalness.
For Sci 2012;58:294–309. https://doi.org/10.5849/forsci.10-075.

Morales-Hidalgo D, Oswalt SN, Somanathan E. Status and trends
in global primary forest, protected areas, and areas designated
for conservation of biodiversity from the Global Forest Resources
Assessment 2015. For Ecol Manage 2015;352:68–77. https://doi.
org/10.1016/j.foreco.2015.06.011.

Potapov P, Hansen MC, Laestadius L. et al. The last frontiers of wilder-
ness: tracking loss of intact forest landscapes from 2000 to 2013.
Sci Adv 2017;3:e1600821. https://doi.org/10.1126/sciadv.1600821.

R Core Team 2021 R: A Language and Environment for Statistical Com-
puting. Vienna: R Foundation for Statistical Computing. https://
www.R-project.org/.

Ørka H-OJ-P, Næsset MC. A framework for a forest ecological base
map – an example from Norway. Ecol Indic 2022;136:108636.
https://doi.org/10.1016/j.ecolind.2022.108636.

Sabatini FM, Burrascano S, Keeton WS. et al. Where are Europe’s
last primary forests? Divers Distrib 2018;24:1426–39. https://doi.
org/10.1111/ddi.12778.

Saito, T. and Rehmsmeier, M. The precision-recall plot is more
informative than the ROC plot when evaluating binary classi-
fiers on imbalanced datasets. PLOS ONE 2015;10:3. https://doi.
org/10.1371/journal.pone.0118432.

Schulenberg R. Dineq: decomposition of (income) inequality. R pack-
age version 0.1.0., 2018. https://CRAN.R-project.org/package=
dineq.

Signorell A, Aho K, Alfons A. et al. DescTools: tools for descrip-
tive statistics. R package version 0.99.46, 2022. https://CRAN.R-
project.org/package=DescTools

Tomppo E, Heikkinen J, Henttonen HM. et al. Designing and Conducting
a Forest Inventory - Case: 9th National Forest Inventory of Finland.
Dordrecht: Springer, 2011.

Uotila A, Maltamo M, Uuttera J. et al. Stand structure in semi-natural
and managed forests in eastern Finland and Russian Karelia. Ecol
Bull 2001;49:149–58.

Valbuena R, Packalen P, Martín-Fernández S. et al. Diversity and
equitability ordering profiles applied to the study of forest struc-
ture. For Ecol Manage 2012;276:185–95. https://doi.org/10.1016/j.
foreco.2012.03.036.

Valbuena R, Packalen P, Mehtätalo L. et al. Characterizing forest
structural types and shelterwood dynamics from Lorenz-based
indicators predicted by airborne laser scanning. Can J For Res
2013;43:1063–74. https://doi.org/10.1139/cjfr-2013-0147.

Valbuena R, Eerikäinen K, Packalen P. et al. Gini coefficient pre-
dictions from airborne lidar remote sensing display the effect
of management intensity on forest structure. Ecol Indic 2016;60:
574–85. https://doi.org/10.1016/j.ecolind.2015.08.001.

Wittebolle, L., Marzorati, M., Clement, L. et al. Initial community
evenness favours functionality under selective stress. Nature
2009;458:623–6. https://doi.org/10.1038/nature07840.

D
ow

nloaded from
 https://academ

ic.oup.com
/forestry/article/97/3/339/7344706 by guest on 01 August 2024

https://tapio.fi/wp-content/uploads/2020/09/Metsanhoidon_suositukset_Tapio_2019.pdf
https://tapio.fi/wp-content/uploads/2020/09/Metsanhoidon_suositukset_Tapio_2019.pdf
https://tapio.fi/wp-content/uploads/2020/09/Metsanhoidon_suositukset_Tapio_2019.pdf
https://tapio.fi/wp-content/uploads/2020/09/Metsanhoidon_suositukset_Tapio_2019.pdf
https://tapio.fi/wp-content/uploads/2020/09/Metsanhoidon_suositukset_Tapio_2019.pdf
https://tapio.fi/wp-content/uploads/2020/09/Metsanhoidon_suositukset_Tapio_2019.pdf
https://tapio.fi/wp-content/uploads/2020/09/Metsanhoidon_suositukset_Tapio_2019.pdf
https://tapio.fi/wp-content/uploads/2020/09/Metsanhoidon_suositukset_Tapio_2019.pdf
https://tapio.fi/wp-content/uploads/2020/09/Metsanhoidon_suositukset_Tapio_2019.pdf
https://tapio.fi/wp-content/uploads/2020/09/Metsanhoidon_suositukset_Tapio_2019.pdf
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.14214/sf.446
https://doi.org/10.14214/sf.446
https://doi.org/10.14214/sf.446
https://doi.org/10.14214/sf.446
https://doi.org/10.2307/1931034
https://doi.org/10.2307/1931034
https://doi.org/10.2307/1931034
https://foresteurope.org/wp-content/uploads/2016/08/SoEF_2020.pdf
https://foresteurope.org/wp-content/uploads/2016/08/SoEF_2020.pdf
https://foresteurope.org/wp-content/uploads/2016/08/SoEF_2020.pdf
https://foresteurope.org/wp-content/uploads/2016/08/SoEF_2020.pdf
https://foresteurope.org/wp-content/uploads/2016/08/SoEF_2020.pdf
https://foresteurope.org/wp-content/uploads/2016/08/SoEF_2020.pdf
https://foresteurope.org/wp-content/uploads/2016/08/SoEF_2020.pdf
https://foresteurope.org/wp-content/uploads/2016/08/SoEF_2020.pdf
https://doi.org/10.32614/RJ-2015-018
https://doi.org/10.32614/RJ-2015-018
https://doi.org/10.32614/RJ-2015-018
https://doi.org/10.32614/RJ-2015-018
https://doi.org/10.1038/nature10425
https://doi.org/10.1038/nature10425
https://doi.org/10.1038/nature10425
https://doi.org/10.1038/nature10425
https://doi.org/10.1186/s40663-015-0055-2
https://doi.org/10.1186/s40663-015-0055-2
https://doi.org/10.1186/s40663-015-0055-2
https://doi.org/10.1186/s40663-015-0055-2
https://doi.org/10.1111/j.2517-6161.1990.tb01775.x
https://doi.org/10.1111/j.2517-6161.1990.tb01775.x
https://doi.org/10.1111/j.2517-6161.1990.tb01775.x
https://doi.org/10.1111/j.2517-6161.1990.tb01775.x
https://doi.org/10.1111/j.2517-6161.1990.tb01775.x
https://doi.org/10.1111/j.2517-6161.1990.tb01775.x
https://doi.org/10.1186/s40663-019-0167-1
https://doi.org/10.1186/s40663-019-0167-1
https://doi.org/10.1186/s40663-019-0167-1
https://doi.org/10.1186/s40663-019-0167-1
http://mcfns.net/index.php/Journal/article/view/13.2/2021
http://mcfns.net/index.php/Journal/article/view/13.2/2021
http://mcfns.net/index.php/Journal/article/view/13.2/2021
http://mcfns.net/index.php/Journal/article/view/13.2/2021
http://mcfns.net/index.php/Journal/article/view/13.2/2021
http://mcfns.net/index.php/Journal/article/view/13.2/2021
http://mcfns.net/index.php/Journal/article/view/13.2/2021
http://mcfns.net/index.php/Journal/article/view/13.2/2021
http://urn.fi/URN:ISBN:978-952-326-467-0
http://urn.fi/URN:ISBN:978-952-326-467-0
http://urn.fi/URN:ISBN:978-952-326-467-0
http://urn.fi/URN:ISBN:978-952-326-467-0
http://urn.fi/URN:ISBN:978-952-326-467-0
doi.org/10.14214/sf.10662
doi.org/10.14214/sf.10662
doi.org/10.14214/sf.10662
http://urn.fi/URN:ISBN:951-40-0589-9
http://urn.fi/URN:ISBN:951-40-0589-9
http://urn.fi/URN:ISBN:951-40-0589-9
http://urn.fi/URN:ISBN:951-40-0589-9
http://urn.fi/URN:ISBN:951-40-0589-9
https://doi.org/10.1111/conl.12120
https://doi.org/10.1111/conl.12120
https://doi.org/10.1111/conl.12120
https://doi.org/10.1111/conl.12120
https://doi.org/10.1186/s40663-020-00254-z
https://doi.org/10.1186/s40663-020-00254-z
https://doi.org/10.1186/s40663-020-00254-z
https://doi.org/10.1186/s40663-020-00254-z
https://doi.org/10.1186/s40663-020-00254-z
https://doi.org/10.5849/forsci.10-075
https://doi.org/10.5849/forsci.10-075
https://doi.org/10.5849/forsci.10-075
https://doi.org/10.5849/forsci.10-075
https://doi.org/10.1016/j.foreco.2015.06.011
https://doi.org/10.1016/j.foreco.2015.06.011
https://doi.org/10.1016/j.foreco.2015.06.011
https://doi.org/10.1016/j.foreco.2015.06.011
https://doi.org/10.1016/j.foreco.2015.06.011
https://doi.org/10.1126/sciadv.1600821
https://doi.org/10.1126/sciadv.1600821
https://doi.org/10.1126/sciadv.1600821
https://doi.org/10.1126/sciadv.1600821
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1016/j.ecolind.2022.108636
https://doi.org/10.1016/j.ecolind.2022.108636
https://doi.org/10.1016/j.ecolind.2022.108636
https://doi.org/10.1016/j.ecolind.2022.108636
https://doi.org/10.1016/j.ecolind.2022.108636
https://doi.org/10.1111/ddi.12778
https://doi.org/10.1111/ddi.12778
https://doi.org/10.1111/ddi.12778
https://doi.org/10.1111/ddi.12778
https://doi.org/10.1371/journal.pone.0118432
https://doi.org/10.1371/journal.pone.0118432
https://doi.org/10.1371/journal.pone.0118432
https://doi.org/10.1371/journal.pone.0118432
https://doi.org/10.1371/journal.pone.0118432
https://CRAN.R-project.org/package=dineq
https://CRAN.R-project.org/package=dineq
https://CRAN.R-project.org/package=dineq
https://CRAN.R-project.org/package=dineq
https://CRAN.R-project.org/package=dineq
https://CRAN.R-project.org/package=dineq
https://CRAN.R-project.org/package=dineq
https://doi.org/10.1016/j.foreco.2012.03.036
https://doi.org/10.1016/j.foreco.2012.03.036
https://doi.org/10.1016/j.foreco.2012.03.036
https://doi.org/10.1016/j.foreco.2012.03.036
https://doi.org/10.1016/j.foreco.2012.03.036
https://doi.org/10.1139/cjfr-2013-0147
https://doi.org/10.1139/cjfr-2013-0147
https://doi.org/10.1139/cjfr-2013-0147
https://doi.org/10.1139/cjfr-2013-0147
https://doi.org/10.1016/j.ecolind.2015.08.001
https://doi.org/10.1016/j.ecolind.2015.08.001
https://doi.org/10.1016/j.ecolind.2015.08.001
https://doi.org/10.1016/j.ecolind.2015.08.001
https://doi.org/10.1016/j.ecolind.2015.08.001
https://doi.org/10.1038/nature07840
https://doi.org/10.1038/nature07840
https://doi.org/10.1038/nature07840
https://doi.org/10.1038/nature07840

	 The relationship between forest structure and naturalness in the Finnish national forest inventory
	Introduction
	Materials
	Methods
	Results
	Discussion
	Conclusion
	Author contributions
	Supplementary data
	Conflict of interest
	Funding
	Data availability


