
WORKING PAPER  |  Version 1.0  |  November 2024  |  1

CONTENTS
Executive summary . . . . . . . . . . . . . . . . . . . . .1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Methodology. . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Endnotes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Acknowledgments . . . . . . . . . . . . . . . . . . . .35
About the authors. . . . . . . . . . . . . . . . . . . . .35

Working Papers contain preliminary research, 
analysis, findings, and recommendations. They 
are circulated to stimulate timely discussion and 
critical feedback, and to influence ongoing debate on 
emerging issues.

Suggested Citation: Guo, Y., Z. Ma, T. Su, 
L. Galizia, X. Li, B. Chen, and X. Liu. 2024. 
“A framework for wildfire prediction and loss 
assessment: Potential application in the financial 
sector—case study in Yunnan.” Working Paper. 
Beijing: WRI China. Available online at doi.
org/10.46830/wriwp.23.00024.

WORKING PAPER

A framework for wildfire prediction and 
loss assessment: Potential application in 
the financial sector—case study in Yunnan
Yuchen Guo*, Zhenyu Ma*, Ting Su, Luiz Galizia, Xiaozhen Li, Baoyi Chen, Xufen Liu

EXECUTIVE SUMMARY
Highlights

 ▪ This paper introduces a framework that combines remote sensing data 
and climate projections, presenting an alternative to traditional physical 
models for assessing and managing the wildfire impact on assets under 
future climate warming projections.

 ▪ Through showcasing the agriculture sector in Yunnan, the paper reveals 
changes in severity and frequency of wildfires in Yunnan and impact on 
five different crops under different climate scenarios.

 ▪ With extreme wildfire events accounting for 15 to 30 percent of annual 
losses, a single event poses significant threats to smallholder farmers, 
which can lead to noticeable risk for financial institutions.

 ▪ Financial institutions in Yunnan are facing complex climate-induced 
impacts and the challenges of limited readiness and capacity to manage 
risk, requiring a comprehensive solution and external empowerment. 

* Equal contribution authors. 
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About this paper 
This working paper introduces a climate risk assessment frame-
work utilizing remote sensing data and climate projections to 
improve the understanding and management of wildfire risks 
under a climate change background for financial institutions. 
The impact of climate change on wildfires is complex, and 
when these impacts are transmitted to agriculture, the situation 
becomes even more complicated, requiring a comprehensive 
analysis that combines the geographic distribution and lifecycle 
of agricultural assets. In our interactions with the financial 
institutions, we found that different stakeholders in the financial 
system exhibit varying understandings of physical climate risks. 
However, overall, there is a significant gap in the understanding 
of physical climate risks. This gap in understanding may lead to 
inequitable resource allocation, further exacerbating the plight 
of vulnerable communities. To improve the capacity to man-
age climate risk for financial institutions and close the gap, it 
is important to involve government-leading stakeholders and 
synergize a comprehensive approach.

Key findings
Based on the research conducted, the study draws the follow-
ing conclusions regarding Yunnan Province: 

 ▪ During 2011 to 2020, historical loss from wildfires 
in Yunnan’s five target agricultural crops ranged from 
US$135.8 million to $254.8 million per year.  

 ▪ Extreme wildfire events account for 15 to 30 
percent of annual loss, posing a significant threat to 
smallholder farmers. 

 ▪ The current framework of the wildfire loss simulation 
model shows good performance in most of the crops 
through testing, providing reliable results for practical use.

 ▪ In Yunnan Province, historical data show the highest 
regional mean Fire Weather Index (FWI) in March and 
April, but future projections shift the peak to February 
and March. Among the scenarios, Shared Socioeconomic 
Pathway (SSP)2-45 shows the highest mean FWI, 
followed by SSP1-26, SSP3-70, and SSP5-85, all 
exceeding observed values.

 ▪ Scenario analysis of wildfire loss demonstrates the 
complexity of the impact of wildfires on crops under climate 
change. We did not observe a trend where higher emissions 
led to greater impacts under different climate scenarios. 

 ▪ Insurance companies are highly enthusiastic about 
integrating physical climate risk analysis to develop 
relevant products like catastrophe and parametric 
insurance. Banks prioritize using climate risk analysis tools 
for effective credit risk management. Stress testing for 
climate risks is crucial but resource intensive.

INTRODUCTION 
Climate change has become an increasingly global concern, 
profoundly affecting ecosystems and many economic sectors 
of human society. The rise in global temperatures is alter-
ing weather patterns, leading to more extreme conditions 
and climate anomalies. This escalation in abnormal climate 
patterns correlates directly with the increase in natural 
disasters, which have become not only more frequent but 
also more severe. Globally, natural disasters  have become 
five times more frequent over the past 50 years, with height-
ened intensity (WMO 2021). On the other hand, risks and 
impacts that disproportionately affect particular groups due 
to uneven distribution of physical climate change hazards, 
exposure, or vulnerability (IPCC 2023) point to the need for 
locally based work.

Among these disasters, wildfires have emerged as a critical 
hazard, posing substantial risks to both human activities and 
the environment. The global incidence of wildfires has doubled 
since 1984 (Mansoor et al. 2022). It is essential to understand 
and assess this heightened frequency of wildfires and the links 
to changing climate patterns (Mansoor et al. 2022). Extreme 
weather events such as droughts, heat waves, and strong winds 
caused by climate change increase the probability of wildfires 
(Westerling et al. 2006). Wildfires, on the one hand, release a 
large amount of carbon dioxide and other greenhouse gases, 
further contributing to climate change (Bowman et al. 2009). 
As a type of physical climate risk, wildfires also cause massive 
damage, including ecological, economic, and social. Ecologi-
cal impacts mainly occur in the form of loss of forest, soil, 
and wildlife resources (Dale et al. 2001). Economic impacts 
include direct economic loss, such as fire suppression costs, 
infrastructure and property damage, and indirect economic 
loss, such as reduced productivity and damage to tourism 
(Hand et al. 2014). Social impacts are reflected in human 
casualties, loss of personal possessions, reduced living stan-
dards, and impaired mental health (Stephens et al. 2014). 

In regard to the empirical side of climate risk and its associa-
tion with the financial sector, financial institutions, including 
banks, insurers, and asset managers, face significant challenges 
from physical climate risks related to hazards such as wild-
fire. These risks variously affect different sectors within the 
financial industry (BIS 2021). In the case of banks, risks could 
translate into credit risks, as borrowers may struggle with loan 
repayments due to loss of income or damage to collateral. The 
United Nations Environment Programme Finance Initiative 
(UNEP FI) and Acclimatize find that under the 2040s 4°C 
scenario (RCP 8.5), the probability of default of a sample 
bank’s loan portfolio could increase to as much as 1.5 times 
the probability under the business-as-usual scenario (UNEP 
2018). Widespread damage could even cause market risk and 
threaten the stability of the financial system. Insurers face the 
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consequences of physical climate risk through their under-
writing business, as claims and loses become higher and more 
frequent (Mills 2009). 

However, according to a survey conducted by CDP in 2020, 
most financial institutions underestimate their exposure to 
climate risk, especially credit and market risks (CDP 2022). 
Financial institutions face multiple challenges when manag-
ing credit risks related to climate change. First, they cannot 
identify and assess physical climate−related risks in a quanti-
fied and granular measurement. This is mainly due to poor 
data availability, complex methodology, lack of hazard-specific 
metrics, and damage functions (Zhou 2022). Second, financial 
institutions’ climate risk assessments for the agriculture sector 
often underestimate the magnitude of its impact. Limited 
practices, such as insufficient climate risk disclosure and 
inadequate scenario analysis, have been identified in reports by 
major financial institutions like JPMorgan Chase (2022) and 
HSBC (2021). This discrepancy may stem from the relatively 
smaller portion of agriculture-related assets in financial 
portfolios compared to high-emission industrial sectors. Con-
sequently, climate risks associated with the agriculture sector 
are frequently neglected. A report by the Network for Green-
ing the Financial System highlighted that financial exposure 
to agriculture-related climate risks is often underrepresented 
in stress testing frameworks (HSBC 2021; JPMorgan Chase 
2022; NGFS 2020).

Yunnan is a hot spot of wildfire hazard in Southeast Asia 
(Ying et al. 2021). Agriculture is not commonly thought of 
as being susceptible to wildfires, but certain economic crops 
that are grown adjacent to or intermixed with forests and 
shrubs can be impacted by wildfire. In Yunnan, agriculture has 
integrated agroforestry practices for a long historical period 
(Guo and Padoch 1995). Additionally, it continues to be a 
vital pillar of the local economy, providing both rural employ-
ment and food security (Zhu et al. 2022). In 2021, 49 percent 
of the total population lived in rural areas in Yunnan, much 
higher than the average rural population of China, which was 
35.3 percent (National Bureau of Statistics 2021). Agriculture 
products are the largest export from Yunnan Province, con-
tributing an important source of income (Yunnan Provincial 
Department of Agriculture and Rural Affairs 2021). 

The agricultural sector also plays an important role in the 
rural financial system. For instance, agriculture-related loans 
accounted for 54 percent of rural commercial banks’ total loan 
portfolios in China in 2019 (Yu 2022). In Yunnan, Fudian 
Bank, Yunnan’s largest urban commercial bank, allocates one-
fourth of its loan assets to the agriculture sector (FDB 2019). 
It is critical for these financial institutions to understand 
physical climate risks to their agricultural assets as the first 
step in taking effective measures, such as adjusting investment 
strategies, improving risk assessment models, or implementing 
resilience-building initiatives. 

Currently, the physical climate risk assessment primarily 
employs scenario analysis methods, which rely on scenarios 
of future climate change projections based on greenhouse gas 
emission scenarios to evaluate the risks and opportunities for 
businesses. It is an effective approach for devising more flex-
ible and robust strategic plans that cover a range of potential 
future scenarios. However, physical climate risk assessment in 
general faces several challenges, including the following: 

 ▪ First, current scenario analysis methods employ a “black-
box” approach extensively. This lowers transparency and 
credibility and limits the ability to improve, compare, 
and integrate different results in climate risk assessments 
(Arribas et al. 2022). 

 ▪ Second, even though diverse climate simulation models 
are available, loss assessment is rarely included in the 
projection. Moreover, many loss analysis experts offer scant 
analysis of the climate itself (Ding et al. 2021), which leads 
to a disconnect between the tools and analytical methods 
covering the entire process. 

 ▪ Third, while physical risks of some disasters—for example, 
floods—have received relatively focused attention, 
trustworthy assessments, evaluations, and projection 
models of the physical risks of most other disasters, such 
as wildfires, are not available. Businesses are interested in 
understanding the various hazards they face, but there is 
a gap between their needs and the information available 
about hazards that are not well researched. 

These three issues warrant significant attention as we strive 
to enhance our understanding of physical climate risks and 
improve the accuracy, comprehensiveness, and transparency of 
the assessments.

There are many different methods to assess wildfire risk that 
consider the interaction of climate, land cover, topography, 
and humans at different spatial and temporal scales. Statistical 
wildfire models have been used for regional and global assess-
ments since they captured the nonlinear fire-driver relationships 
and are able to reproduce historical wildfire patterns (Galizia 
et al. 2022; Turco et al. 2017). Yet, those normally require a 
spatial aggregation, implying a prediction with a coarse spatial 
resolution, which is a limitation for assessing the wildfire risk 
at a proprietary level. Machine learning algorithms have been 
increasingly used in fire science to model wildfire risk ( Jain et al. 
2020). Those algorithms deal very well with nonlinear relation-
ships and present an overall good agreement with observations; 
however, they lack interpretability, especially when projected 
future climate exceeds the observed values during the historical 
period. Another possible approach for assessing wildfire risk 
is the use of fire spread models, also known as fire behavior 
simulations (e.g., FlamMap). These simulations explicitly 
consider how landscape variables affect fire behavior processes 
through fire spread equations, and they also account for other 
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wildfire drivers, such as wind and fire suppression effects 
(Finney et al. 2011). However, this approach is better suited for 
local studies since this requires very fine-scale landscape data 
that are computationally expensive to run across continental 
domains. Additionally, fire spread models are mostly used to 
design and evaluate fuel treatments, exposure, and risk analysis 
(Parisien et al. 2019), but often they fail in predicting future 
fire activity since they rely on strong assumptions of constant 
weather conditions such as fire duration and wind speed during 
the simulations.

To address the three challenges above, we chose the CLI-
MADA model as a base is for our work. CLIMADA is a 
transparent model developed by ETH Zurich. It provides 
statistical models with machine learning algorithms for 
hazard prediction. Combined with a loss assessment function, 
CLIMADA presents a comprehensive framework for assess-
ing physical climate risk. 

In our study, we built and further developed a forecast-
ing methodology framework based on CLIMADA and 
equipped it with scenario analysis. Empirically, we conducted 
a case study on agriculture portfolios in Yunnan Province. 
Through the assessment of the impact of wildfires on agri-
cultural production, our objective was to examine the model 
and highlight the importance and practicality of physical 
climate risk assessment in this specific context. Meanwhile, 
we organized multiple informal discussions with financial 
institutions and experts in the area, aiming to understand the 
practical difficulties in implementing climate risk measures 
and explore solutions to address the difficulties. By building 
this framework and conducting a case study, this paper aims 
to answer the research question of how could an we build a 
transparent climate risk assessment framework and integrate 
such a framework into decision-making for financial institu-
tions to manage climate risk and benefit people, nature, and 
the climate, especially for vulnerable groups (small stakeholder 
farmers in this case)? To answer this question, we developed 
this paper using the following steps:

 ▪ Methodology framework and case study

 ▪ To introduce a methodology framework for 
detailed assessing and predicting economic loss 
caused by wildfire 

 ▪ To evaluate crop production loss caused by wildfire 
under a historical baseline and different climate 
scenarios in Yunnan Province 

 ▪ Local status of climate risk measures and implementation 
of the framework

 ▪ To understand the status and challenges of financial 
institutions in Yunnan in the context of facing 
physical climate risks 

 ▪ To discuss briefly how financial institutions could apply 
this methodology and integrate the assessment of 
climate risks into their busineses

METHODOLOGY
The methodology is divided into two parts. The first part 
introduces a framework for the assessment and predic-
tion of economic loss from wildfires. The second part is an 
initial exploration with the target audience to assess the 
readiness and applicability of the framework, to understand 
the status and challenges financial institutions are facing in 
implementing measures against climate risk.

Framework for evaluating economic loss
We demonstrate this framework in four parts—dataset 
preprocessing, evaluating historical loss, predicting near-term 
future loss based on historical records, and predicting long-
term future loss based on scenario analysis. 

An overall structure to quantify economic loss involves four 
dimensions of variables—hazard, exposure, exposure’s price, 
and vulnerability (impact function). The mathematical expres-
sion is defined as:

  Economic Loss = Exposure×f imp (Hazard)×Price (1)

Where hazard describes weather events such as wildfire, 
storms, floods, droughts, or heat waves both in terms of 
probability of occurrence and physical intensity. In this 
study, hazard represents the expected intensity (calculated 
in brightness temperature) of wildfire. Exposure describes 
the set of assets, crops, people, livelihoods, infrastructures, 
and so on within an area of interest in terms of their 
geographic location, their value, and other characteris-
tics. Here, exposure is the production of the crops that 
are exposed to wildfire. fimp(impact function) describes 
a relationship between a hazard’s intensity (calculated in 
brightness temperature) and the exposure in terms of a 
percentage loss. Price represents the monetary value per 
unit of the exposed asset.

With the basic concept above, we will explain in the fol-
lowing sections how to evaluate the impact of historical 
wildfires on crop losses, near-term future losses based on 
historical records, and long-term future losses based on 
scenario analysis. The framework is illustrated in Figure 1. 
The green flows represent historical loss. The framework 
uses historical climate data, impact function, and historical 
exposure data to assess historical economic loss. The orange 
flows present near-term future loss based on histori-
cal records and long-term future loss based on scenario 
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Fire prediction

analysis. The framework uses generated predicted climate 
data, impact function, and future exposure data to assess 
future economic loss.

Data and preprocessing
In the framework of predicting and assessing the crops’ 
production loss caused by wildfire, different types of datasets 
are needed. In this working paper, we use only open source 
datasets and provide details of preprocessing methods to make 
the framework easy to use. This section shows the four key 
datasets and the preprocess methods.

Figure 1  |   Overall framework of the methodologies for the assessment and prediction of economic loss from wildfires 

Notes:  MODIS = Moderate Resolution Imaging Spectroradiometer. ERA5 = ECMWF Reanalysis v5 - Land. WS = wind speed. TEM = temperature. RH = relative humidity. PRE = 
precipitation. NUM = number of wildfire events in the study area. K = brightness temperature of wildfire. AREA = the average of the total area of wildfires per unit time in the 
study area. FWI = Fire Weather Index. NEX-GDDP-CMIP6 = NASA Earth Exchange Global Daily Downscaled Climate Projections. SSP = Shared Socioeconomic Pathway. 
FPP = fire propagation probability. EM-DAT = Emergency Events Database. FPM = fire probabilistic matrix. FTR = fire temperature range. SPAM = Spatial Production 
Allocation Model. km = kilometer.

Source: Authors.

HAZARDS: WILDFIRE

In our working paper, we use the Moderate Resolution Imag-
ing Spectroradiometer (MODIS) fire products as our historical 
wildfire hazard observation. The MODIS dataset is offered 
by the Fire Information for Resource Management System, 
or FIRMS (Earthdata 2015), which is run by the National 
Aeronautics and Space Administration, or NASA (Appendix  
A-a). The datasets include latitude, longitude, acquisition date, 
and the brightness temperature in Kelvin (K) for each pixel 
identified as a fire point in one-kilometer (km) resolution. 
We collected the MODIS wildfire data from a 20-year period 
(2001–20) and transformed them into wildfire events. 
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We used the definition of “wildfire events” and the processing 
method of CLIMADA to modify the MODIS wildfire data 
for later use in the analysis and projection model (CLIMADA 
2017). A wildfire event is defined as when the temporal and 
spatial distance of the burning pixel centroids is close enough. 
There are two parameters defining the “closeness”:

 ▪ Temporal distance. If the time interval between two 
wildfire points is less than two days, they will be considered 
as one wildfire event.

 ▪ Spatial distance. If the cluster maximum distance between 
two center points (centroids) is 15 km, they will be 
considered as one wildfire event.

In addition, we chose the highest temperature in each pixel 
from an individual wildfire event to represent the intensity of 
the wildfire (CLIMADA 2017). 

ASSET EXPOSURE: CROPS

Yunnan has a diverse range of agricultural products due to 
its climate characteristics and geographic location. However, 
considering that the research objectives need to include both 
staple grains and cash crops, due to their significance to the 
local economy and food security; crops’ susceptibility to wild-
fire impacts; and data availability, we ultimately selected five 
agricultural products—wheat, maize, soybeans, sugarcane, and 
coffee—as our research targets (Appendix A-b). 

To estimate the impact of wildfires on crops in the Yunnan 
region as accurately as possible, we needed to reconstruct 
exposure based on the agricultural data we have collected. 
There are two types of exposure data being used—crops’ 
lifecycle and spatial distribution.

Exposure data—growing period

For the crops’ lifecycle exposure data, we made a simple 
distinction of the time periods when crops are affected by 
wildfire and the time periods when crops are not affected by 
wildfire. To define those two periods, for short-term crops, we 
considered the growing period as an affected period, and the 
rest as an unaffected period. For perennial crops, we consid-
ered them to be constantly affected by wildfire. The lifecycle 
of those five crops is shown in Figure 2 (Chen Dan 2020; 
Hu and Zimmer 2013; Yunnan Provincial Department of 
Agriculture and Rural Development 2023; Jianyi 2019; Yun-
nan Coffee Industry Expert Group 2021). Only the affected 
periods are included in the loss calculation.

Exposure data—crop distribution

For the crops’ spatial distribution data, we combined the Spatial 
Production Allocation Model (SPAM)3 with the National Bureau 
of Statistics, or NBS4, to generate (mathematical expression, 
Appendix A-c) our target crops’ production values spatial distribu-
tion (Figure 3). The SPAM 2010 we used was spatial production 
values intensity distribution in tonnes of global area in 10 km in 42 
types of crops. The NBS dataset is annual crop production values at 
the provincial level, with the units converted to tonnes. 

The details of combining and generating the steps 
are as follows:

1. Clip the crop production data for the Yunnan region from 
the global 2010 SPAM dataset using boundary shapefile.

2. Upsample the SPAM 2010 from 10 km to 1 km in the 
Yunnan region (Appendix A-d).

3. Calibrate each pixel’s production by using NBS Yunnan 
provincial level production dataset in 2010.

Figure 2  |   Overall framework of the methodologies for the assessment and prediction of economic loss from wildfires 
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4. Rescale the spatial dataset by using the ratio of the Yunnan 
provincial crops’ production for the target year to the crops’ 
production in 2010.

REANALYSIS OF METEOROLOGICAL OBSERVATION 
DATA: ERA5-LAND

In our research, in addition to using wildfire data and agricultural 
production data, we also used meteorological data. We extracted 
the necessary meteorological data from ERA5-Land5, including 
temperature, precipitation, wind speed, and relative humidity. We 
used those variables to calculate the Fire Weather Index (FWI); 
details of how to calculate the FWI are displayed in Appendix A-e. 
The FWI is used to estimate the wildfire intensity (Xin 2010). The 
details of how we used the FWI calculated by ERA5-Land will be 
explained in “Near-term future wildfire economic loss on crops.”

FUTURE CLIMATE PROJECTION: NEX-GDDP-CMIP6

Except for meteorological data, we also used the climate scenario 
dataset to predict how climate change affects wildfires, which in 
turn impacts agricultural production. We used the NEX-GDDP-
CMIP6 (NASA Earth Exchange Global Daily Downscaled 
Climate Projections) as our scenario analysis dataset. 

The dataset comprises global downscaled climate scenarios 
derived from the general circulation model (GCM) runs 
conducted under the Coupled Model Intercomparison Project 
Phase 6 (CMIP6) and across the four Tier 1 greenhouse 
gas emissions scenarios known as Shared Socioeconomic 
Pathways, or SSPs (Thrasher et al. 2024). The dataset com-
piles climate projections from 35 CMIP6 GCMs and four 
SSP scenarios (SSP2-45, SSP5-85, SSP1-26, and SSP3-70) 
(Appendix A-h)  for 2015 to 2100, as well as the historical 
experiment for each model for 1950 to 2014.

In our study, we used temperature, precipitation, wind speed, 
and relative humidity data from NEX-GDDP-CMIP6 to 
calculate the FWI under four SSP scenarios.

Historical economic loss caused by wildfire
The historical economic loss refers to crop history loss by 
wildfire in tonnes multiplied by the corresponding year’s 
annual price in a particular year. The historical loss is cal-
culated based on historical hazard, historical exposure, and 
impact function, illustrated by the green flows in Figure 1.

Figure 3  |   Crop production distribution in Yunnan Province, 2020 

a.  Crop: Maize  
Overall production in 2020: 937,999.0 tonnes

d.  Crop: Sugarcane  
Overall production in 2020: 1,597,1704.0 tonnes

b.  Crop: Wheat  
Overall production in 2020: 697,000.1 tonnes

e.  Crop: Coffee  
Overall production in 2020: 131,000.016 tonnes

c.  Crop: Soybeans  
Overall production in 2020: 464,000.0 tonnes

Source: Authors.
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Historical hazard refers to wildfire hazard, which consists of 
individual wildfire events defined in “Framework for valuating 
economic loss.” Each wildfire event comprises its coordinates, 
time, and brightness temperature. Coordinate describes the 
locations of all pixels in one wildfire, and it can also describe 
the one wildfire’s burning area by summing the area of all 
pixels in one wildfire event. Time is the start and end date of 
the wildfire. Brightness temperature describes the intensity 
of each wildfire event pixel by pixel.

Historical exposure refers to the five types of crop produc-
tion spatial distribution of unit tonnes in corresponding years, 
demonstrated in “Asset exposure: Crops.”

We used the impact function developed by Lüthi (Lüthi et al. 
2021). This function assumes that the fire brightness tempera-
ture serves as a proxy of wildfire intensity, which is the main 
cause of damage to infrastructure like buildings, to forests, and 
to crops. We assumed that wildfire’s effect on crops obeys the 
impact function used by Lüthi (equations 2 and 3; see Figure 
4). In our study, the resolution of the hazard and exposure 
dataset’s resolution was 1 km, so we used the impact function 
with 1 km resolution (Appendix A-n). We also assumed that 
the impact of wildfire burning on exposure, in the absence 
of human intervention, will continue until the exposure is 
completely burned out, so mean damage degree is always 100 
percent, as shown in Figure 4. However, due to the limitations 
of satellite resolution, a single pixel represents a mixture of 
multiple land features. The higher the brightness temperature, 
the higher the proportion of wildfire in the mixed pixel, which 
means a higher percentage of affected assets (PAA). So, in 
our paper, impact function is the same curve as PAA, and the 
impact function is expressed as follows:

f = i3

1+i3
                                    (2) 

Where ilat,lon at a given location is defined as:

ilat,lon= MAX [(Ilat,lon-Ithresh)]
Ihalf - Ithresh

                      (3)

where i or ilat,lon is brightness temperature of the fire pixel 
measured in Kelvin, Ihalf =295.01 K, which can be seen as the 
steepness of the sigmoid function (equation 2); Ithresh=295 K, 
the minimum intensity where damages occur (here chosen as 
a constant 295 K, the minimum value of a FIRMS data point 
to be displayed as a fire); MAX means the maximum value of 
overlap pixel in one wildfire event.

The wildfire impact function at one-kilometer resolution was 
approximated as a near-binary impact equation. The impact 
reaches its peak as the intensity of the brightness temperature 
reaches 295.2 K, with an approximate 99.99 percent loss for 
bright temperature over 295.2 K. 

To calculate a specific year’s economic loss, we used the 
corresponding year’s wildfire events observations and crop 
exposures with wildfire impact function, equations 2 and 3. 
After that, we included Food and Agriculture Organization 
of the United Nations (FAO) crop prices for a specific year 
and used the annual exchange rate (USD to CNY) to get the 
local currency6 (Appendix A-k). We calculated the historical 
economic loss from wildfire by averaging the loss for the 
10-year period 2011–20.  

Figure 4  |   Wildfire impact function—the impact of wildfire with different intensity (one-kilometer resolution)
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Notes:  MDD = mean damage degree. PAA = percentage of affected assets for each intensity. MDR = mean damage rate; MDR = MDD × PAA. 

Source: Authors.
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Near-term future projected economic loss 
caused by wildfire
Near-term future projected economic loss here focuses on 
short-term projection; for example, economic loss of 2021 is 
based on data from 2020. To assess the projected economic 
loss, we need the target year’s hazard simulation, target 
year’s crop exposure, and impact function. We used a wildfire 
model based on the Monte Carlo simulation. This model, 
requiring wildfire parameters as input, can simulate the 
occurrence of wildfires in the study area for a year. According 
to the characteristics of the crop growth cycle (Figure 2) and 
the relationship between meteorological elements and wildfire 
parameters (Figure 7 and Figure 8), the input parameters 
have been changed from annual to monthly parameters. We 
provide a detailed introduction on how wildfire is simulated 
in “Near future wildfire simulation” and “Near-term future 
wildfire economic loss on crops.” As for the target year’s crop 
exposure, we directly used the spatial distribution of crop 
production corresponding to those years. As for the impact 
function, it remained unchanged. 

NEAR FUTURE WILDFIRE SIMULATION

The wildfire simulation is the most challenging part in the 
framework. The process for wildfire prediction is illustrated by 
the orange flows in Figure 1, starting from “FPM,” “Number,” 
“FTR,” and “AREA,” and ending at “Fire prediction.” We can 
divide the process into three parts: how the wildfire simula-
tion model works, how to build relationships between the 
FWI and wildfire simulation model’s input parameters, and 
how to build a large number of wildfire projections by using 
a mixing matrix.

How the wildfire simulation model works. Before running 
a wildfire simulation, we have to make assumptions about 
factors that induce wildfire events. The cause of wildfire often 
varies, including climate factors, geographic factors, local 
policy, local culture, and so on. Changes in those factors can 

potentially lead to a significantly different probability. In our 
future prediction simulations, the future weather factors follow 
the relationship with the FWI and global climate simulation. 
We assume that other factors that can induce wildfire follow 
a natural historical trend based on historical data and will not 
change significantly. Therefore, we can run our simulation in a 
predictable environment.

The wildfire projection model contains four parameters and 
one simulation function to project wildfire, shown as in Figure 
5. Parameter 1: the fire probabilistic matrix (FPM). Parame-
ter 2: the number of wildfire events (NUM). Parameter 3: the 
overall fire propagation probability (FPP). Parameter 4: the 
fire temperature range of wildfire events (FTR). Simulation 
function: run one wildfire. For each one wildfire projection 
(yearly), the model combines numbers of “run one wildfire,” 
and each “run one wildfire” will start on the FPM and propa-
gate until it stops. The FPP and FTP as well as NUM will 
change according to the corresponding month of the year. The 
details of obtaining wildfire projection model input param-
eters are described in Appendix A-f.

SIMULATE CORE FUNCTION: RUN ONE WILDFIRE

With the above four parameters input into the wildfire predic-
tion model, the core function of “run one wildfire” is driven. 
“Run one wildfire” simulates the spread of a wildfire from 
the starting ignition to burning out and produces the final 
burned area and location with max brightness temperature of 
a wildfire event.

Run one wildfire is driven by three parameters: the 
FPM, FPP, and FTR. 

The “run one wildfire” propagation rules are as follows:

①    Select an ignition centroid randomly based on uniform 
distribution from the FPM, since a wildfire can only 
ignite on centroids from the FPM.

Figure 5  |   Flowchart of the wildfire projection model 

Set Fire Probabilistic Matrix Number

Run One Wildfire

Fire Propagation Probability Fire Temperature Range

Wildfire Projection
Source: Authors.
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②    Every adjacent (queen adjacent) centroid to the selected 
centroid can start burning with a probability (generated 
randomly from 0 to 1 based on uniform distribution, 
Figure 6) larger than (>) the FPP (Parameter3) × the 
centroid specific propagation probability, which is defined 
on the FPM (Parameter1). For the FPP, different months 
correspond to different FPPs.

③    The selected burning centroid becomes an ember centroid, 
which cannot start burning again and thus no longer 
propagates any fire.

④    Each burning centroid will give a wildfire 
temperature based on the FTR (Parameter4) in the 
corresponding month.

⑤    Repeat ① to ④ until the propagation stops. Stop 
criteria: the propagation stops when no centroid is 
burning or exceeds the iteration threshold. In this 
study, we set the iteration threshold as 50,000 based on 
historical experience (i.e., most wildfire events generally 
stop propagation when the iteration is less than 50,000) 
and consideration of the time and expense required 
to run the model.

⑥    After propagation stops, we get one simulated wildfire 
event with a burning area, burning location, and burning 
brightness temperature of corresponding pixels. 

For one whole year’s simulation, according to the monthly 
difference, we will “run one wildfire” based on the monthly 
wildfire events number (Parameter 2) with the corresponding 
FPP and FTR, and eventually we get one wildfire projection 
model of a year.

How to build relationships between the FWI and wild-
fire simulation model’s input parameters. In the wildfire 
simulation model section, we know that the model’s input 
parameters contain a fire probabilistic matrix, wildfire events 
number, fire propagation probability, and fire temperature 
range. And for the near-term future prediction, we know 
that we are using the target year’s monthly FWI to predict 
the above parameters. According to the research (Ager et al. 
2014; Ntinopoulos et al. 2022; Shumuel 2023) and experiment 
(Figure 7), we found that the FWI is a good parameter to 
build the bridge between climate/weather change and wildfire 
trends. The FWI indicates the historical monthly regional 
FWIs from 2001 to 2020, which are calculated using the 
following steps:

1. Extract the daily noon temperature and daily noon relative 
humidity, daily noon wind speed, and total precipitation 
in the past 24 hours from ERA5 to calculate all the pixel’s 
daily FWIs in Yunnan Province from 2001 to 2020.   

2. Average the spatial daily FWIs into spatial monthly FWIs 
in Yunnan Province from 2001 to 2020.

3. Calculate the zonal mean value statistic based on each 
spatial monthly FWI in Yunnan Province to get historical 
monthly regional FWIs from 2001 to 2020.

The wildfire trends indicate the monthly wildfire events num-
ber (Number) and monthly mean burning area (Area), which 
indicate the corresponding monthly FPP (Appendix A-j) and 
monthly mean brightness temperature (K) in Yunnan Prov-
ince from 2001 to 2020.

Figure 6  |   Detailed illustration of one iteration of the wildfire propagation rule from 1 to 3 in the “run one wildfire”

Notes:  Properties from centroid burned: 0 = unburned centroid, 1 = burning centroid, 2 = ember centroid. 

Source: Authors.
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We used a Bayesian Ridge Regression to model the relation-
ship between the FWI and the variables “Number,” “K,” and 
“Area.” We identified outliers through a two-dimensional 
density distribution (Figure 8). To mitigate the potential 
adverse impact of these outliers on our model, we opted for 
Bayesian Ridge Regression as our initial approach to estab-
lishing relationships. One of the key advantages of Bayesian 

Ridge Regression is that it measures the uncertainty of a 
model’s predictions. Also, we separated the training data (80 
percent) and test data (20 percent). The values of the fitted 
correlation R2 and root mean square error for test data as well 
as the parameter slopes and intercepts of the Bayesian Ridge 
Regression model are given in Table 1.

Figure 7  |   Correlation between FWI and wildfire characteristics

Figure 8  |   Bayesian Ridge Regression visualization for correlations between FWI and wildfire indicators

Table 1  |   Analysis results of the fitting relationships (R2, RMSE, slope, intercept) between each parameter 
influencing the fire prediction model and the FWI

VARIABLE R2 RMSE SLOPE INTERCEPT CORR P-VALUE

Number 0.70 24.34 7.34 -0.702 0.7115 2.400e-38

K 0.31 5.87 0.48 315.4 0.3261 3.900e-06

Area 0.50 6.79 0.83 2.34 0.5067 4.637e-17

Notes:  R2 = R squared. RMSE = root mean square error. p = probability. K = brightness temperature.

Sources: Authors’ estimate based on AidData (2023), Asia Society Policy Institute (2024), OECD (2023b), Qu (2021), and Zhou et al. (2022).

a.  Correlation between FWI and 
Number of Wildfires

a.  FWI and Wildfire Events Correlation

b.  Correlation between FWI and Centroid 
Brightness Temperature

b.  FWI and Temperature Correlation

c.  Correlation between FWI and Monthly Mean 
Burned Area

c.  FWI and Burned Area Correlation

Source: Authors.

Source: Authors.
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After we constructed the relationship between the monthly 
mean FWI and monthly “Number,” monthly “K” range, and 
monthly mean “Area,” when we predicted the future wildfire 
result, we only needed to know the corresponding year’s 
monthly regional FWI.   

How to build a large number of wildfire projections by using 
a mixing matrix. As the wildfire model is based on simulation, 
multiple instances of simulation are needed to get a reliable result. 
In our research, we simulated 500 yearly wildfire results for the 
target year, and then we synthesized 10,000 yearly wildfire results 
by using a mixing matrix. The specific method was to permute 
and combine the simulation results of different batches for each 
month. Considering the limitations of computational resources 
and time, we ultimately chose 10,000 simulations as the final 
number, thus obtaining the annual wildfire distribution. 

Near-term future wildfire economic loss on crops
With the near-term future target year’s wildfire simulation 
distribution, we first got rid of the wildfire events that did not 
affect each crop in Yunnan Province, then used the economic 
loss calculation function (equation 1) to get the final crop loss 
result affected by wildfire. Then we used the target year’s crop 
spatial distribution and filter hazard and used the wildfire 
impact function to calculate production loss, and we used a mix-
ing matrix to get the final loss distribution in Yunan Province.    

Long-term future loss based on 
scenario analysis 
For a long-term future’ like 2030 or 2050, that is over five 
years, we chose scenario analysis to predict the future loss. 
Like the near-term future’s prediction, we also needed the 
FWI to build the relationship between the climate scenario 
and wildfire simulation model inputs. As for the climate 
scenarios, we utilized the NEX-GDDP-CMIP6’s SSP1-
26, SSP2-45, SSP3-70, and SSP5-85 as our target climate 
projections. Considering the computational consumption, we 
only calculated the FWI for the year 2030 to demonstrate our 
predictions for four different climate scenarios. 

To quantify wildfire loss under different climate scenarios, we 
completed the following steps:

1. We calculated the monthly regional FWI under four 
climate scenarios (SSP1-26, SSP2-45, SSP3-70, SSP5-85) 
in 2030 by using NEX-GDDP-CMIP6. The calculation 
process was the same as for calculating the historical 
monthly regional FWI. In our calculations, we selected 18 
models to calculate the FWI from the 34 models available 
for each scenario. These 18 models (Appendix A-g) are 
available in every scenario and have the same time range. 
Then we computed the monthly average values to represent 
the FWI for each scenario.

2. We calculated monthly “Number,” “Area,” and “K” 
value based on corresponding linear models shown in 
Table 1 using the monthly FWI under different climate 
scenarios as input. 

3. We calculated the monthly FPP based on the monthly 
“Area” predicted under different scenarios and the curve 
model shown in Figure D (Appendix A-f ).

4. Based on each climate scenario’s monthly FPP, monthly 
wildfire events number, and monthly fire temperature, 
as well as the FPM generated by historical wildfire 
observation from 2001 to 2020 input into the wildfire 
simulation model, we simulated annual wildfire projections 
in 2030 under four climate scenarios (SSP1-26, SSP2-45, 
SSP3-70, SSP5-85). Also, we still needed to simulate 500 
projections and synthesize 10,000 projections to make 
the 2030 wildfire projection distribution the same as the 
method mentioned in “Near future wildfire simulation.” 

5. To get each crop production loss, we first aggregated 12 
months (from January to December) of wildfire projections 
and excluded the unaffected months’ (Figure 2) result from 
one final wildfire projection. We then used equation 1 to 
calculate the loss production based on crop production 
spatial distribution and impact function as well as 10,000 
wildfire projections to get the production loss distribution 
in the corresponding four climate scenarios.

6. For the price of a specific future year (2030), we used 
the Organisation for Economic Co-operation and 
Development’s (OECD 2019) long-term prediction on 
inflation to adjust the crop price per tonne based on the 
2020 price. By multiplying the crop production loss of 
2030, we got the economic loss of crops in 2030.

Assessing readiness and applicability 
To authenticate the assessment findings and attain a com-
prehensive understanding of local stakeholders’ viewpoints 
regarding the implementation of climate risk assessment, we 
targeted a diverse array of stakeholders, ranging from local 
governmental bodies, local financial institutions such as banks 
and asset management firms, local state-sponsored inves-
tors, insurance and reinsurance companies both in Yunnan 
and nationally, and university institutions. The principal aim 
underlying these interactions was to delve into the subsequent 
pivotal questions:

 ▪ How do the financial institutions perceive the impact of 
wildfires on the agriculture sector?

 ▪ How do the financial institutions currently manage 
and mitigate risks associated with wildfires in the 
agriculture sector?

 ▪ What are the major challenges faced by the financial 
institutions in mitigating loss?
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 ▪ Which policies, products, methods, or tools would be 
valuable in enhancing risk management, and what gaps 
exist in this regard?

 ▪ What are the perspectives of financial institutions 
regarding integrating our methodology into their 
operational process?

Given travel limitations imposed by COVID-19 and the diverse 
perspectives represented by the stakeholders, the interactions did 
not follow a structured approach. Instead, they were conducted 
in a diverse and open-ended manner to encourage in-depth 
discussions. It is important to note that the information collected 
was qualitative in nature and primarily intended to supplement 
the limited information available about local financial institutions’ 
risk management practices. The results of questions are summa-
rized in “Discussion” to provide further insights into stakeholders’ 
viewpoints and inform the study’s overall findings.

RESULTS
Historical wildfire economic loss 
indicates strong threat to small 
farmers
Based on the 2020 annual exchange rate and the FAO’s 
annual crop price, we calculated the total economic loss of 
those crops from 2001 to 2020; the amount was from $135.8 
million to $254.8 million. Despite the total loss being less 
than 1 percent of total production, individual maximum wild-
fire events, accounting for 15 to 30 percent of annual loss, pose 
significant threats to small farmers, as small farmers can lose 
100 percent of their crops in a wildfire event. The impact of 
wildfires on small farmers also extends to the financial sector, 
particularly banks that serve rural communities.

Table 2 shows the calculated historical state (2011−20) of 
average annual production, mean damage, percentage of 
damage, and maximum damage from a single wildfire event 
on the five crops in Yunnan Province. The average annual 
damage to production caused by wildfires constitutes about 
0.4 to 1 percent of crop production. The impact on soybeans 
is only about 0.1 percent; this is primarily due to the differ-
ence in timing between the soybean growing cycle and the 
main wildfire season. It is worth noting that we calculated 
average annual maximum damage loss based on historical data 
from 2011 to 2020. 

Average Maximum Damage =  1
N

 ∑ i=1 max(Di,j)N
j

   (4)

Here, Di,j represents the damage value in year i for event 
j, and N is the total number of years considered. The for-
mula calculates the average of the maximum damage values 
across all years.

Wildfire is a relatively small proportion compared to other 
crop-impacting disasters such as regional droughts (Wang 
et al. 2017; Yue et al. 2022). However, it is an aspect that 
should not be overlooked. In rural China, the basic unit of 
agricultural production and management is the family farm 
( Jun 2019). A single wildfire event could potentially lead 
to a direct baseline loss of up to 939 tonnes of wheat. If we 
make an assumption that the per capita grain sales volume of 
rural residents in 2020 was three times that of 2012, and then 
compare this sales volume with our estimated loss historical 
state, we find that the loss from a single fire far exceeds the 
sales volume per unit. This finding clearly indicates that a 
single fire event could potentially result in catastrophic loss for 
a farmer’s family. They may struggle to meet financial obliga-
tions such as loans and mortgages, which can also lead to 

Table 2  |   Assessment for annual average of five crops’ production loss (2011–20)

CROP BASELINE PRODUCTION 
(TONNES)

DAMAGE 
(PRODUCTION: TONNES)

PERCENTAGE 
(%)

AVERAGE ANNUAL MAXIMUM 
DAMAGE (TONNES)

Maize 8,452,540.05 35,028.34 0.41 9,523.97

Wheat 753,690.06 4,794.00 0.64 939.14

Soybeans 407,380.07 387.69 0.10 46.66

Sugarcane 17,053,112.30 130,993.99 0.77 33,366.69

Coffee 125,555.01 1,312.54 1.05 313.51

Source: Authors.
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defaults for the bank’s portfolio. The need for financial institu-
tions to reassess the risk profile of agricultural lending and 
possibly to increase their reserves to cover potential loan loss 
can have a ripple effect on the availability of credit throughout 
the rural economy.

Near-term future wildfire simulations 
show good performance in most of 
the crops 
For the near-term future’s crop production loss prediction, we 
used only 2020 and 2021 as our target years to demonstrate 
the process of how the model simulates the loss and the 
model’s accuracy. We used meteorological data from ERA5-
Land for the years 2020 and 2021 to calculate the monthly 
FWI for the corresponding years. Based on the monthly FWI, 
we calculated the parameters (Appendix A-l) we needed: the 

FTR, FPP, and number of wildfire events. We then input 
these parameters into the wildfire prediction model. After we 
got the wildfire projection distribution, we calculated the loss 
with the corresponding five types of crops’ production values’ 
spatial distribution in tonnes.

We calculated the average of the crop losses we obtained, as well 
as the 95 percent confidence interval of the average. We com-
pared these averages with observations by using relative error 
(RE), and we obtained the following results, shown in Tables 
3 and 4: For maize, wheat, and soybeans, the RE was within 5 
percent; coffee was second, with an RE of around 20 percent 
over two years. The worst was sugarcane, with an error exceed-
ing 80 percent in 2020. However, it is worth noting that the 
magnitude of observations and predictions generally showed 
the same trend; that is, if observed crop losses were high, the 
predictions were also relatively high. Overall, the predictions 
were relatively accurate for maize, wheat, and soybeans.

Table 3  |   Projected mean economic loss in 2020 of five crops

CROP PRODUCTION 2020 
(SIMULATION, TONNES)

PRODUCTION 2020 
(OBSERVATION, TONNES) RELATIVE ERROR 95% CONFIDENCE INTERVAL

Maize 16426.74 16771.582 -2.05% 16353.17~16500.3

Wheat 3966.73 4064.610 -2.4% 3957.18~3976.29

Soybeans 235.17 240.613 -2.26% 232.263~238.07

Sugarcane 70019.73 37967.838 84% 69562.60~70476.85

Coffee 397.129 338.679 17.26% 392.51~401.75

Table 4  |   Mean economic loss in 2021 of five crops

CROP PRODUCTION 2021 
(SIMULATION, TONNES)

PRODUCTION 2021 
(OBSERVATION, TONNES) REALATIVE ERROR 95% CONFIDENCE INTERVAL

Maize 15145.278 15450.780 1.97% 15063.255~15227.30

Wheat 3285.644 3425.301 -4.07% 3274.77~ 3296.512

Soybeans 149.478 150.701 0.811% 147.661~ 151.294

Sugarcane 78475.912 62662.699 25.2% 77970.82~ 78980.99

Coffee 336.021 264.833 26.88% 331.795~ 340.24
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The scenario analysis of wildfire loss 
demonstrates the complexity of the 
impact of wildfires on crops under 
climate change
In our working paper, we explored four SSPs’ (SSP1-26, 
SSP2-45, SSP3-70, SSP5-85) FWI, wildfire simulation, as 
well as damages. The results show that the impact of climate 
change on agricultural products through wildfires is complex 
and requires detailed analysis, considering scenarios as well 
as the spatiotemporal characteristics of agricultural products. 
Following are the details on how we conducted our evaluation. 

Figure 9 presents the monthly average and range of the FWI 
based on the historical observation (2001−20) and different 
scenarios of 18 models (2030, Appendix A-g). For histori-
cal FWI, the range represents the monthly maximum and 
minimum values of the FWI from 2001 to 2020. For each 
SSP, the range indicates the monthly maximum and minimum 
of the FWI in all 18 models. The FWI was calculated by 
first computing daily averages through zonal statistics, then 
monthly averaging the daily values, and finally obtaining the 
monthly average by averaging each year for history and each 
model for projections. For Yunnan Province, the top two 

historical regional mean FWIs occurred in March and April; 
however, future projections indicate that the highest mean 
FWI values were concentrated in February and March, which 
is a shift of the FWI peak along the time dimension. From 
the mean value of the FWI in different scenarios, SSP2-45 
had the maximum FWI, followed by SSP1-26, SSP3-70, 
and SSP5-85, which were all higher than the observation. 
The maximum value of the FWI range of all scenarios was in 
SSP5-85, which showed up in March.

According to the FWI in different scenarios (Figure 9), we 
calculated the wildfire projection model parameters under 
different scenarios (Figure 10). 

We summarized the monthly “Number,” “K,” and “Area” 
in 2030 compared with the baseline. The result (Figure 11) 
shows that the number and area of wildfire increased in all 
SSPs scenarios. From all scenarios, the Number and Area in 
SSP2-45 increased the most; 1.23 times for Number and 1.11 
times for Area compared with the baseline. This was followed 
by SSP1-26, 1.19 times for Number and 1.08 times for Area 
compared with the baseline. Next were SSP3-70 (1.13 times 
for Number and 1.05 times for Area) and SSP5-85 (1.1 times 
for Number and 1.03 times for Area). As for the temperature, 
there were no noticeable changes in any of the scenarios.

Figure 9  |   Monthly FWI, historical data and projected SSPs in 2030

Notes:  SSP = Shared Socioeconomic Pathway.

Source: Authors.
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Figure 10  |   Monthly statistics and analysis of wildfire events

Figure 11  |   Historical and projected analysis of wildfire events and impacts by 2030

a. Monthly number of wildfire events (Number)

c. Monthly fire temperature based on wildfire events (K)

a.  Number of wildfire events 
(Number)

b.  Overall burned area (Area)

c.  Sum of monthly temperature 
based on wildfire events (K) in 
historical state and different 
SSPs by 2030

b. Monthly average wildfire burned area (Area)

s. Monthly FPP in different SSPs in 2030
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Figure 12  |   Loss distribution of five crops under different SSPs (tonnes)

We used the monthly parameters (Figure 13) under different 
scenarios to input into the simulation wildfire model. For each 
projection, we integrated 10,000 forecast simulations (Figure 
12), and in the end, we calculated the mean value and its 95 
percent confidence interval. For each type of crops exposure, 
we did not calculate the 2030 scenario of the exposure but 
mainly used the average crop exposure over a 10-year period 
(2011–20). Figure 13 and Table 5 show the loss and change 
due to damage to all crops under different SSPs.  

The crop production loss trend can be classified into three 
types: Increasing Trend: Wheat and Sugarcane show an 
increasing trend in losses across all scenarios, particularly 
under SSP2-45. This may indicate that these crops are becom-
ing more sensitive to wildfires in the context of future climate 
change. Decreasing Trend: Maize shows a decreasing trend in 

losses across all scenarios, especially in SSP2-45 and SSP3-70. 
This might suggest that these crops are becoming less sensitive 
to wildfires due to future climate changes. Mixed Trend: The 
changes in losses for soybeans and coffee show a mixed trend. 
Soybeans exhibit an increase under SSP5-85, while coffee 
shows an increase under SSP1-26 and SSP2-45 but a slight 
decrease under SSP5-85. These projections underscore the 
varied impact of different socioeconomic pathways on crop 
production, reflecting the complex interplay between climate 
change, agriculture, and wildfire.

With prices multiplied into the crops production loss, we also 
gain the corresponding scenarios’ economic loss in Table 6. 
Due to the introduction of the inflation rate, the economic 
losses for all crops under all four types of scenarios have 
increased compared to the historical baseline.

a. Crop Type: Maize

d. Crop Type: Sugarcane

b. Crop Type: Wheat
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Figure 12  |   Loss distribution of five crops under different SSPs (tonnes) (cont.)

Notes: SSP = Shared Socioeconomic Pathway.

Source: Authors.
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Table 5  |   Change in production of five crops under different SSPs compared to the baseline (in tonnes)

VARIABLE MAIZE WHEAT SOYBEANS SUGARCANE COFFEE

Historical 35028.34 4794.00 230.77 130993.99 1312.54

SSP1-26 33979.96 5434.42 218.81 153823.29 1476.92

SSP2-45 31875.74 5859.29 224.87 169503.41 1507.08

SSP3-70 31949.29 5119.31 184.28 142772.74 1330.55

SSP5-85 32902.93 4810.97 248.38 135250.23 1288.72

Notes:  SSP = Shared Socioeconomic Pathway.

Source: Authors.

Table 6  |   Change in economic loss of five crops under different SSPs compared to the baseline (in US$)

SCENARIO MAIZE WHEAT SOYBEANS SUGARCANE COFFEE 

Historical 14,691,596 1,752,589 180,542 99,012,472 4,086,641

SSP1-26 19,164,482 2,671,530 230,193 156,345,509 6,183,519

SSP2-45 17,977,715 2,880,394 236,568 172,282,734 6,309,791

SSP3-70 18,019,197 2,516,624 193,867 145,113,765 5,570,702

SSP5-85 18,557,044 2,365,046 261,301 137,467,910 5,395,569

Notes:  SSP = Shared Socioeconomic Pathway.

Source: Authors.

Our different scenario projections show that escalating 
emission does not necessarily worsen the impact of wildfire 
on crop production loss. Wildfire is influenced by various 
factors, and even the FWI is a complex measure affected by 
wind speed, temperature, precipitation, and relative humidity. 
However, this does not mean hotter scenarios are better, as 
climate change imposes a systemic impact on different climate 
hazards, and there is often a compound effect among hazards. 
In this case, financial institutions with diverse portfolios 
should consider analyzing a comprehensive effect related to 
their sensitive asset.

Stakeholders show eagerness to 
integrate climate risk analysis while 
facing challenges
Through interactions with relevant stakeholders, we found 
that financial institutions exhibited enthusiasm for assimi-
lating physical climate risk analysis into their operational 
frameworks. Particularly, banks holding substantial agricultural 

portfolios evinced a resolute inclination to infuse this analyti-
cal approach into their evaluation and monitoring of credit 
risks. Their recognition of the significance of comprehending 
and effectively addressing climate-induced vulnerabilities 
within their lending undertakings was pronounced. Likewise, 
the ranks of interested parties encompassed a pair of insur-
ance companies, intent on conceiving insurance products 
underpinned by these methodologies. Their emphasis lies in 
the imperative to harmonize their offerings with assessing the 
physical risk and using it as a base for pricing. Notably, asset 
management firms, too, showcased eagerness in assimilating 
physical climate risk analysis into their investment delibera-
tions thereby underscoring the mounting cognizance of 
climate-connected perils’ influence on investment yield.

However, alongside their interest, financial institutions also 
acknowledged several challenges. Their understanding of 
the specific risk posed by wildfires is limited. This highlights 
the need for increased awareness and knowledge-building 
initiatives to address this gap and enhance their risk assess-
ment capabilities.
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The feedback from stakeholders revealed significant challenges 
faced by financial institutions in terms of their awareness of 
how to effectively assess and manage physical climate risk. 
Many institutions currently lack a comprehensive understand-
ing of the potential impacts that climate change could have 
on their operations and portfolios. This limited awareness can 
be attributed to various factors, including a lack of dedicated 
resources and expertise within these institutions, as well as 
a historical focus on more traditional financial risks. Conse-
quently, financial institutions may underestimate the potential 
risks associated with climate-related events such as wildfires, 
including their frequency, intensity, and overall impact. Such 
lack of awareness can impede their ability to proactively iden-
tify and mitigate physical climate risk, leaving them vulnerable 
to financial loss.

In addition to limited awareness, financial institutions face 
challenges related to their capacity and technical expertise 
in assessing physical climate risk. Assessing physical cli-
mate risk necessitates specialized knowledge, sophisticated 
modeling techniques, and access to relevant data sources. 
However, many institutions lack the necessary tools and 
expertise to effectively analyze and interpret climate data 
or to incorporate climate risk factors into their existing risk 
management frameworks. Furthermore, the complexity and 
uncertainty inherent in climate modeling pose additional 
challenges for financial institutions, as they must navigate a 
rapidly evolving field with constantly changing methodolo-
gies and standards. These capacity constraints limit financial 
institutions’ ability to accurately quantify and assess physical 
climate risks, making it difficult to incorporate these risks 
into their decision-making processes and adequately safe-
guard their portfolios.

DISCUSSION
Uncertainties in the methodology
Based on the current stage of the model and framework, 
uncertainty in the results of the model may come from the 
following factors:

 ▪ Uncertainty from hazard input. Currently, the prediction 
of input parameters is mainly based on the FWI. 
However, the FWI is an indicator that tells how weather 
impacts wildfire. Wildfire is quite complex, triggered 
by both climate and human activities. Although in our 
research we have implemented a different kind of method 
to remove human activities by using a high-confidence 
wildfire point result, clustering to get rid of individual 
points as long as we get rid of wildfire points from any 
unaffected time period of crops, weather-driven and 
human-driven wildfire still compound each other. Also, 
we use historical observation to generate the FPM; 

however, it still has the limitation that the land use in the 
future will contribute to a change in the FPM. If more 
precise wildfire records and more advanced algorithms 
can be found in future research, it would greatly enhance 
the accuracy of the model. 

 ▪ Crop exposure. Current exposure data are available 
only at low resolution, which increases uncertainty. For 
example, in “Assess readiness and applicability,” our 
study integrates SPAM with production values from 
the NBS to map out the distribution of crop production 
in Yunnan, using 2010 as a baseline and scaling the 
data to 2020. This approach presupposes that various 
crop types across the province evolve uniformly, a 
presumption that may seem overly simplistic due to 
data scarcity. The uncertainty of crop exposure data 
accuracy could be reduced through data replacement and 
algorithmic improvements.

 ▪ Crop prices. Crop prices are influenced by various 
factors such as climate change, market demand, natural 
disasters, policy changes, and so on. In our paper, 
we do not predict crop prices but simply estimate 
the price for 2030 based on the OECD’s long-term 
inflation forecast. However, in practical applications, 
practitioners need to incorporate these price 
estimates into the final loss calculations to obtain the 
precise economic loss.

 ▪ Impact function. As the impact function involves 
the intensity threshold, which could be derived from 
previous projections using various methods, errors 
might arise from the errors in these projections. This 
kind of error could introduce inaccuracies in both the 
historical assessment results and the projections. The best 
method for eliminating this potential error might require 
higher granularity observations. The uncertainty in the 
percentage of affected assets in this study primarily stems 
from the growth cycle of the crops themselves. A more 
precise description of the growth cycle would reduce 
this uncertainty. 

 ▪ The systematic bias between reanalysis data and climate 
simulation data. This part of the error mainly comes 
from the discrepancy between ERA5 and NEX-GDDP-
CMIP6. ERA5 has far higher time and spatial resolution 
than NEX-GDDP-CMIP6, leading to a systematic 
error in the data of the research area itself. The current 
approach is to correct the data based on an overlapping 
short historical period (2000–14) through linear fitting, 
which only reduces the systematic error of this period. In 
future research, if more precise and stable algorithms are 
available, this part of the error would be further reduced. 
Alternatively, regional climate models may be employed 
instead of global climate models when focusing on 
specific regions.
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Practical measures in addressing 
climate risks for different stakeholders
Regarding integrating climate risk assessment with different 
financial institutions, insurance companies exhibited more 
enthusiasm for integrating physical climate risk analysis. 
Insurance companies have a strong interest in understanding 
and quantifying the increased climate-related risks and in 
developing relevant insurance products, such as catastrophe 
insurance. Technically, approaches to looking into extreme 
situations should be applied. This can be done in various ways. 
One method is to use distributions that present the pos-
sible situation better, such as long tail distribution. A simpler 
method is to investigate upper-end percentile in the distribu-
tion, instead of only the expected estimates. In the situation 
of lacking capacity, upper-end percentile is possibly a better 
method, as using a different distribution requires rerunning 
the simulation process. Additionally, to build insurance prod-
ucts, companies require accurate data and risk estimation. In 
this sense, the modeling framework presented here is essential 
for the proper functioning of insurance products, as it sup-
ports accurate payouts, enhances reliability, and enables better 
risk assessment—especially for parametric insurance, which 
relies on predefined triggers or indices to determine payouts. 
Without accurate risk estimation, there is the possibility of 
either false positives or false negatives, leading to incorrect 
insurance pricing. The model developed here can be used as a 
reference for the annual expected loss, helping insurers define 
the premium and manage their overall risk exposure more 
effectively. Finally, integrating climate data and risk models 
into parametric insurance pricing systems allows insurers 
to continuously monitor and update pricing in response to 
changing climate conditions. This dynamic approach ensures 
that premiums accurately reflect evolving climate-related risks.

Banks, on the other hand, prioritize effective credit risk man-
agement as a crucial aspect of their business. Consequently, 
they are eager to utilize physical climate risk analysis tools to 
evaluate loan applications and conduct risk analyses through-
out the credit process. Additionally, banks have a vested 
interest in monitoring potential risks to manage the credit 
risk on their loan assets. This can be integrated into credit 
procedures as a factor for an overall risk model or as a risk 
screening tool. It can also be used for after-loan management 
to provide capacity to increase resilience of loan portfolios. For 
stress testing, even though it is crucial for financial stability, 
it requires understanding and comparison of overall risk, as 
well as more intensive resources for implementation. At this 
stage, it is more central banks’ and regulators’ role to develop 
methodology and implement capacity building for banks. 

Meanwhile, the government can play a vital role in addressing 
financial institutions’ concerns about climate change’s physical risks. 
Firstly, it can improve the collection and distribution of meteo-
rological and climate data to provide financial institutions with 
real-time, high-quality weather information. This empowers them 
to make more precise assessments of climate-related risks. Sec-
ondly, the government can support collaborative risk management 
platforms, facilitating joint research and modeling among financial 
institutions and offering tools and guidelines on climate risks. 
Lastly, by offering incentives for proactive climate risk management 
and enforcing mandatory climate risk disclosure, the government 
can encourage financial institutions to incorporate climate-related 
risks into their strategies, fortifying the financial system’s stability.

Regarding the potential of implementing our methodol-
ogy, from a technical perspective, if relevant stakeholders 
are interested in integrating this framework into their 
assessment system, they might need or get the input/output 
shown in Table 7.

Table 7  |   Summary of the input, intermediate, and output of the framework/model

FRAMEWORK/MODEL INPUT FRAMEWORK/MODEL INTERMEDIATE PRODUCTS FRAMEWORK/MODEL OUTPUT

• Historical wildfire satellite observation

• Observation of meteorological elements

• Portfolio map (crop geospatial distribution)

• Damage record

• Climate model output

• Crop lifecycle

• Wildfire events

• FWI historical/future projection

• Wildfire future prediction (future 1 year)

• Wildfire future projection (SSP)

• Historical loss/damage

• Wildfire future prediction loss (future 1 year)

• Wildfire future projection loss (SSP)

Notes:  FWI = Fire Weather Index. SSP = Shared Socioeconomic Pathway.

Source: Authors.
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There are several types of data involved in the areas of 
climatology, economic analysis, remote sensing, and finance. 
Interdisciplinary knowledge and capacity are required in order 
to implement and integrate physical risks assessment into 
financial institutions’ work. In addition, if financial institu-
tions intended to utilize more precise data, the cost would 
significantly increase. Often, smaller financial institutions lack 
the capacity and resources to implement such a framework. 
Therefore, a government-leading data platform is essential for 
those financial institutions.

Improvements and outlook
Going forward for this research, there are two perspectives for 
future improvements. On the one hand, there is still space for 
better model performance. This should focus on reducing the 
uncertainty. From a modeling perspective, a significant change 
could be creating a crop-tailored impact function to accurately 
describe the connection between hazard intensity and crop 
loss severity. Building a better connection between the FWI 
and wildfire event is also pivotal in increasing accuracy of the 
future prediction. Data quality is another pillar for accurate 
results. The next stage should also aim to increase the quality 
of local meteorological data and non-meteorological data, 
as well as update the model with future newest global cli-
mate simulations.  

On the other hand, from an empirical and implementation 
perspective, it is crucial to conduct the pilot projects and 
gather feedback from financial institutions to understand 
empirical challenges. Meanwhile, it is also important to 
collaborate with multi-stakeholders to address capacity and 
operational difficulties. This iterative process will allow for 
continuous improvement of the methodology and forming an 
implacable tool that can be integrated into financial institu-
tions’ and other stakeholders’ operation, thereby enabling its 
eventual widespread adoption for managing physical climate 
risk within the financial sector. 
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APPENDIX A 
a. 

FIRMS offers two types of satellite instruments: 

1. Moderate Resolution Imaging Spectroradiometer (MODIS): Near 
real-time with 1 km resolution. Data available from November 
2000 to present.

1. Visible Infrared Imaging Radiometer Suite (VIIRS): Near real-
time data with 0.375 km resolution. Data available from January 
20, 2012, to present. 

Both MODIS and VIIRS datasets provide global coverage and free 
access online. A hybrid thresholding and contextual algorithm 
classifies each swat pixel as a fire point or not for MODIS data 
(Giglio et al. 2016) and for VIIRS data (Schroeder et al. 2014).

b. 

Indicators of choosing target crops in Yunnan: 

1. SPAM and NBS’s crop tap are overlapped. 

2. Affected by wildfire: a. The crop distribution and historical 
wildfire records are overlapped. b. Information from experts on 
what kind of crops are affected by wildfire.

3. Historically, crop production has exceeded 100,000 tonnes.

4. Data integrity: Available up to the year 2020.

5. The crop types need both staple grains and cash crops.

6. Preferably, choose characteristic agricultural products of Yunnan 
(e.g., coffee, sugarcane, tobacco).

c.

The mathematical expression is as follows:

SPAM2010yunnan =  Clip (SPAM2010)

SPAM2010yunnanupsample = Upsampling(SPAM2010yunnan) 

   SPAM2010yunnanupsamplecalibration

=  
NBS2010×SPAM2010yunnanupsample

Sum (SPAM2010yunnanupsample )

   SPAM{year}yunnanupsamplecalibration

=  
NBS{Year}×SPAM2010yunnanupsamplecalibration

Sum (SPAM2010yunnanupsample )

Clip refers to clipping the area of Yunnan from original SPAM data by 
using Yunnan Province’s boundary. 

Upsampling refers to upsampling from 10 km resolution to 1 km resolution; 
the detail methodology will be displayed in section d below.

Sum refers to the accumulation of all the pixel values (production 
values in different crops) in SPAM 2010 in the region of Yunnan.

NBS{Year} refers to the total agricultural production (in tonnes) in 
Yunnan in the target year.

Figure A-1  |   Indicators of choosing target crops in Yunnan
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d. 

Upsampling methodology:

The original crop production dataset’s spatial resolution is around 
10 km. To match the spatial resolution with MODIS wildfire data, 
we used bilinear interpolation to upsample the data, increasing the 
spatial resolution from the original 10 km to 1 km (Figure A-2). This 
interpolation method ensures that the total production is consistent 
with official statistics, and the value of each pixel at the original 
resolution is the same as the total value within the range of the 
original pixel resolution after scaling. However, since it is scaled 
based on a mathematical algorithm and does not take into account 
the actual distribution of crop production at a 1 km resolution, 
there is still a discrepancy between the scaled results and the 
actual observations.

e.

The Fire Weather Index (FWI) is a component of the Canadian 
Forest Fire Weather Index System. It is used to estimate fire intensity 
(Xin 2010). The FWI System includes six components: three fuel 
moisture codes (Fine Fuel Moisture Code, Duff Moisture Code, 
Drought Code) and three fire behavior indices (Initial Spread 
Index, Buildup Index, Fire Weather Index). These components are 
calculated from weather observations of temperature (T), relative 
humidity (RH), wind speed (WS), and 24-hour precipitation (PRE) 
(Van Wagner 1987).

Following is an explanation about coding in the FWI:

Fine Fuel Moisture Code (FFMC). This code is a numeric rating 
of the moisture content of litter and other cured fine fuels. This is an 
indicator of the relative ease of ignition and the flammability of fine 
fuel. FFMC is affected by temperature, relative humidity, wind speed, 
and 24-hour precipitation.

Duff Moisture Code (DMC). This code represents the moisture 
content of loosely compacted organic layers of moderate depth. 
It gives an indication of fuel consumption in moderate duff layers 
and medium-size woody material. DMC is affected by temperature, 
relative humidity, and 24-hour precipitation.

Drought Code (DC). This is a rating of the average moisture 
content of deep, compact organic layers. It is an indicator of 
seasonal drought effects on forest fuels and the amount of 
smoldering in deep duff layers and large logs. DC is affected by 
temperature and 24-hour precipitation.

Initial Spread Index (ISI). This is a combination of the effect of fuel 
moisture and wind speed on the rate of spread of a fire.

Buildup Index (BUI). This is a combination of the DMC and DC. It 
is an indicator of the total amount of fuel available for combustion.

Fire Weather Index (FWI). This is a combination of the ISI and the 
BUI. It indicates the potential rate of fire spread, assuming that the 
fire is fueled by a mixture of fine fuel and deeper organic layers.

The relationship of these components is shown in Figure A-3.

Figure A-2  |   Upsampling of Yunnan maize production data from 10 km to 1 km

Maize production distribution in Yunnan 10 km resolution Maize production distribution in Yunnan 1 km resolution

Source: Authors.
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f. 

Description of simulation model input parameters 

Parameter 1: Fire probabilistic matrix

The fire probabilistic matrix (FPM) was constructed using historical 
fires with the following steps: 

1. Collecting satellite observations of wildfires over a historical 
period. Locations where wildfires were observed historically are 
defined with a probability of 1. 

Figure A-3  |   Framework for calculating the Fire Weather Index

Figure A-4  |   Fire probabilistic matrix

2. We assume that areas surrounding these historically observed 
wildfire points also have a probability of experiencing wildfires. 
However, this probability decays exponentially with distance 
from the wildfire occurrence point, following a 2-n pattern, 
where n is the number of decay steps. 

3. It is important to note that our MODIS data has a resolution of 1 
km. Therefore, decay occurs every 1 km. We follow CLIMADA’s 
wildfire model decay setting, applying the decay three times 
(i.e., n = 3). In our study, we used historical wildfire observations 
from 2001 to 2020 in Yunnan Province to generate the FPM. 
During the simulation, the wildfire can only ignite on the FPM 
where probability is over 0. The results are shown in Figure A-4.

FWI

BUI
DC

DMC

FFMC

T

RH

PRE

WS

ISI

Note:  PRE =precipitation. T = temperature. RH = relative humidity. WS = wind speed. DC = drought code. DMC = duff moisture code. FFMC = fine fuel moisture code. BUI = 
buildup index. ISI = initial spread index. FWI = Fire Weather Index.

Source: Authors.

Source: Authors.
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b. Burned area analysis

Parameter 2: Wildfire events number

Wildfire events number (Number) refers to the count of fire events 
that occur within a certain temporal and spatial range. To drive 
wildfire simulation, the number of wildfire events for each month 
of the year is needed in the wildfire projection model. For the near 
future projection, we can predict the wildfire events using a different 
approach: by establishing a self-regression equation using historical 
wildfire events and predicting the number of wildfire events for the 
target year, or by establishing a relationship between the number of 
wildfires and a weather index and ultimately predicting the number 
of fire events based on the weather index. In order to maintain 
consistency in methodology for obtaining the number of wildfire 
events in the near-term future and scenarios analysis, we ultimately 
adopted the approach of establishing an index relationship. That is, 
we established a relationship using monthly data of the FWI and the 
number of wildfires from historical data, and then predicted the final 
events number by using the monthly FWI for the target year.

Parameter 3: Fire propagation probability

The fire propagation probability (FPP) is another input parameter 
used to describe the probability of wildfire spread and propagation. 
The FPP is positively correlated with monthly mean burning area. 
According to CLIMADA, the FPP is assigned an initial global 
average value of 0.21. We optimized the monthly FPP for Yunnan 
by scaling this value up or down to reflect local conditions. The 
adjusted FPP values were input into the wildfire projection model to 
simulate the monthly total burned area (a). We then compared this 
simulated burned area with the monthly total historical observed 
burned area (b) for the same number of wildfire events in Yunnan 
Province. We determined the final monthly FPP’s value when the 
relative error  between a and b is within 10 percent. According to 
our experiments (Figure A-5a), there is a high correlation between 
the monthly FPP and the monthly mean burning area (equation 
5) in the same temporal and spatial range. The monthly FPP 
increases sharply at first, and then the curve flattens as the area 
reaches around 15 km2. In our study, we determined the relationship 
between the monthly mean burned area in Yunnan Province and 
the corresponding monthly FPP by fitting a function. Based on 
the characteristics of the scatterplot formed by the FPP and mean 
burned area, we selected an exponential function, a logarithmic 
function, and a rational function to fit the final relationship. We 
separated the dataset into a training set (80 percent) and a test set 
(20 percent). The training set was used to fit the curve. For model 
evaluation, we calculated the R-square on the training and test sets 
independently. As shown in Figure A-5b, we fit the data with three 
possible models and obtained the best optimization result (R2= 
0.586, a moderate fit, implying that the model is useful but there is 
still room for improvement) from function y= -0.3x -1/3.19+0.36: 

   mean burning area

=  
∑ i=1individual wildfire events area

wildfire events number           
 (5)

where n equals the number of wildfire events in a specific month. 
The wildfire events number means the number of wildfire events in 
that month. Individual wildfire events area means the aggregate of 
all pixels’ area in one wildfire event.

As we got the curve between the FPP and monthly mean burning 
area, for the near-term future prediction, as long as we know the 
monthly mean burning area at the target year, we know the monthly 
FPP inputs for the simulation model. To calculate the monthly 
mean burning area, we followed the same strategy by establishing 
a relationship between historical wildfires’ monthly burning area 
and the FWI and use the targeted year’s monthly FWI to predict the 
monthly burning area to get monthly FPPs in the target year.

Figure A-5  |   Correlation analysis between fire 
propagation probability and burned area 

a. Fire propagation probability analysis

Source: Authors.
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Parameter 4: Fire temperature range

Except for the monthly number of wildfire events and monthly FPPs, 
we also need the monthly fire temperature range (FTR) as input 
for the wildfire projection model. Following the same rule, we also 
first built the historical relationship between the FTR and FWI and 
predicted the target year’s FTR by using the target year’s FWI.

g. 

We mainly considered the availability and completeness of the 
model, and finally selected all the models from 34 GCM models that 
were time-complete and available in different scenarios and could 
be quickly downloaded from the NASA data portal at https://www.
nccs.nasa.gov/services/data-collections/land-based-products/
nex-gddp-cmip6.

Table A-1  |   Model table

Model list in 
CMIP6

‘ACCESS-CM2’, ‘ACCESS-ESM1-5’, ‘BCC-CSM2-MR’, ‘CESM2’, ‘CESM2-WACCM’, ‘CMCC-CM2-SR5’, ‘CMCC-ESM2’, ‘CNRM-CM6-1’, ‘CNRM-ESM2-1’, 
‘CanESM5’, ‘EC-Earth3’, ‘EC-Earth3-Veg-LR’, ‘FGOALS-g3’, ‘GFDL-CM4’, ‘GFDL-ESM4’, ‘GISS-E2-1-G’, ‘HadGEM3-GC31-LL’, ‘HadGEM3-GC31-MM’, 
‘IITM-ESM’, ‘INM-CM4-8’, ‘INM-CM5-0’, ‘IPSL-CM6A-LR’, ‘KACE-1-0-G’, ‘KIOST-ESM’, ‘MIROC-ES2L’, ‘MIROC6’, ‘MPI-ESM1-2-HR’, ‘MPI-ESM1-2-LR’, 

‘MRI-ESM2-0’, ‘NESM3’, ‘NorESM2-LM’, ‘NorESM2-MM’, ‘TaiESM1’, ‘UKESM1-0-LL’

Model list used in 
working paper

‘FGOALS-g3’,’MRI-ESM2-0’,’NorESM2-LM’,’MPI-ESM1-2-LR’,’KACE-1-0-G’, ‘MPI-ESM1-2-HR’,’EC-Earth3’, ‘NorESM2-MM’,’INM-CM5-0’, 
‘CESM2’,’CMCC-ESM2’,’CMCC-CM2-SR5’,’TaiESM1’,’GISS-E2-1-G’, ‘ACCESS-CM2’,’ACCESS-ESM1-5’, ‘GFDL-ESM4’,’IITM-ESM’

Notes:  FAOSTAT = Food and Agriculture Organization Corporate Statistical Database. FAO = Food and Agriculture Organization of the United Nations. OECD = Organisation for 
Economic Co-operation and Development.

Source: Authors.

h.

The Intergovernmental Panel on Climate Change Sixth Assessment 
Report assessed the projected temperature outcomes of a set of five 
scenarios that are based on the framework of the SSPs. The names 
of these scenarios consist of the SSP on which they are based 
(SSP1−SSP5), combined with the expected level of radiative forcing 
in the year 2100 (1.9 to 8.5 watts per square meter). This results in 
scenario names SSPx-xx listed below. And in NEX-GDDP-CMIP6, it 
only offers SSP1-26, SSP2-45, SSP3-70, and SSP5-85.

Table A-2  |   The projected temperature outcomes of a set of five scenarios that are based on the framework of the SSPs

SSP SCENARIO ESTIMATED WARMING
(2041–60)

ESTIMATED WARMING
(2081–2100)

VERY LIKELY RANGE IN °C
(2081–2100)

SSP1-19 Very low GHG emissions:
CO2 emissions cut to net zero around 2050 1.6°C 1.4°C 1.0–1.8

SSP1-26 Low GHG emissions:
CO2 emissions cut to net zero around 2075 1.7°C 1.8°C 1.3–2.4

SSP2-45
Intermediate GHG emissions:

CO2 emissions around current levels until 2050, 
then falling but not reaching net zero by 2100

2.0°C 2.7°C 2.1–3.5

SSP3-70 High GHG emissions:
CO2 emissions double by 2100 2.1°C 3.6°C 2.8–4.6

SSP5-85 Very high GHG emissions:
CO2 emissions triple by 2075 2.4°C 4.4°C 3.3–5.7

Notes:  SSP = Shared Socioeconomic Pathway. GHG = greenhouse gas. CO2 = carbon dioxide.  

Source: Authors.
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i.

Lüthi offers three types of resolution impact functions for wildfire. 
The details are shown in Figure A-6.

From his research, the impact function is calibrated by the 
Emergency Events Database (EM-DAT). Maintained by the Center 
for Research on the Epidemiology of Disasters, EM-DAT is a 
global database on natural and technological disasters. EM-DAT 
provides comprehensive and systematic data on the occurrence 
and impact of disasters worldwide from 1900 to the present. The 
database includes information on the affected population, human 
causalities, and economic costs of different types of disasters, such 
as earthquakes, floods, droughts, wildfires, and industrial accidents.

Figure A-6  |   Three types of resolution impact functions for wildfire

WFsingle 1: wildfire 1 km WFsingle 1: wildfire 10 kmWFsingle 1: wildfire 4 km
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APPENDIX B

Table B-1  |   Price of five crops

CROP PRICE (YUAN PER TONNE) IN 2020 SOURCE PRICE (YUAN PER TONNE) IN 2030 SOURCE

Maize 2894 FAOSTAT of FAO 3891.5562

2020 prices multiplied 
by the OECD’s projected 

inflation factors of 34.47% 
until 2030.

Wheat 2522.5 FAOSTAT of FAO 3392.0009

Soybeans 5398.2 FAOSTAT of FAO 7258.94916

Sugarcane 5215.4 FAOSTAT of FAO 7013.1383

Coffee 21483.4 FAOSTAT of FAO 28888.68

Notes:  FAOSTAT = Food and Agriculture Organization Corporate Statistical Database. FAO = Food and Agriculture Organization of the United Nations. OECD = Organisation for 
Economic Co-operation and Development.

Table B-2  |   The wildfire projection model inputs for 2020 and 2021 

PARAMETER 
2020 JAN. FEB. MAR. APR. MAY JUN. JUL. AUG. SEP. OCT. NOV. DEC.

FWI 4.56 3.33 4.56 4.56 6.13 26.75 6.13 0.1 0.01 0.01 0.01 1.57

NUM 32 23 32 32 44 195 44 0 0 0 0 10

K 317.58 316.9 317.58 317.5 318.3 328.24 318.342 315.39 315.39 315.39 315.39 316.15

Area 6.12 5.10 6.121 6.12 7.428 24.54 7.428 2.33 2.334 2.33 2.33 3.645

FPP 0.19 0.18 0.19 0.19 0.20 0.25 0.20 0.13 0.13 0.13 0.13 0.16

PARAMETER 
2021 JAN. FEB. MAR. APR. MAY JUN. JUL. AUG. SEP. OCT. NOV. DEC.

FWI 4.26 5.13 13.18 9.65 9.53 4.7 0.13 1.26 0.01 1.26 0.55 2.96

NUM 30 36 96 70 69 33 0 8 0 8 3 21

K 317.45 317.86 321.72 320.03 319.97 317.65 315.46 316.01 315.4 316.0 315.6 316.82

Area 5.878 6.599 13.275 10.35 10.250 6.240 2.45 3.389 2.334 3.389 2.80 4.8

FPP 0.18 0.19 0.23 0.21 0.21 0.19 0.13 0.15 0.13 0.15 0.142 0.17

Notes:  NUM = number of wildfire events. K = brightness temperature of wildfire. FPP = fire propagation probability. FWI = Fire Weather Index

Source: Authors.
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Figure B-1  |   Loss distribution of five crops in 2020
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Figure B-2  |   Loss distribution of five crops in 2021
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ENDNOTES
1. A natural disaster is the highly harmful impact on a society or 

community following a natural hazard event. Some examples 
of natural hazard events include flooding, drought, earth-
quake, tropical cyclone, lightning, tsunami, volcanic activity, 
and wildfire.

2. Brightness temperature (also referred to as BT) is a measure 
of the radiance of microwave radiation traveling upward from 
the top of Earth’s atmosphere; as for MODIS, it is the chan-
nel 21/22 brightness temperature of the fire pixel measured in 
Kelvin (NASA 2024).

3. Global Spatially-Disaggregated Crop Production Sta-
tistics Data for 2010 Version 2.0: IFPRI HarvestChoice 
Dataverse (https://dataverse.harvard.edu/dataset.
xhtml?persistentId=doi:10.7910/DVN/PRFF8V). This database 
not only applies the latest global synergy cropland layers 
and other relevant data but also expands the estimates of 
crop area, yield, and production from 20 to 42 major crops 
under four farming systems across a global 5-arcminute grid 
(Yu et al. 2020).

4. The National Bureau of Statistics (https://data.stats.gov.cn/
easyquery.htm?cn=E0103) provides historical province-level 
data sector-by-sector. We chose the dataset from 2001 to 2021 
and selected the sector “农业,” subsector “主要农作物产品产
量,” and province “云南.”

5. ERA5-Land (Copernicus Climate Change Service 2017) is a 
global climate reanalysis dataset released by the European 
Centre for Medium-Range Weather Forecasts (ECMWF). It 
is based on advanced climate models and various weather 
prediction systems. It uses ground and satellite observation 
data to generate high spatial resolution (about 9 km) and high 
temporal resolution (hourly) global atmospheric, land, and 
ocean data from 1979 to the present. The ERA5-Land dataset 
includes various meteorological variables (e.g., temperature, 
precipitation, wind speed, humidity) and can be used in 
climate analysis and projecting, environmental monitoring, 
and weather forecasting, due to its high accuracy and wide 
applicability.

6. Average exchange rate (1 US$ = 6.9 yuan).

7. EM-DAT: https://www.emdat.be/

8. The initial version of this code was inspired by https://scipy-
thon.com/blog/the-forest-fire-model/.

9. Relative error = |(a - b)/b| × 100%.
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