

TEN YEARS AFTER THE PARIS AGREEMENT: WHAT'S DONE, WHAT'S DUE?

Assessing the progress in 10 years and looking ahead to 2050

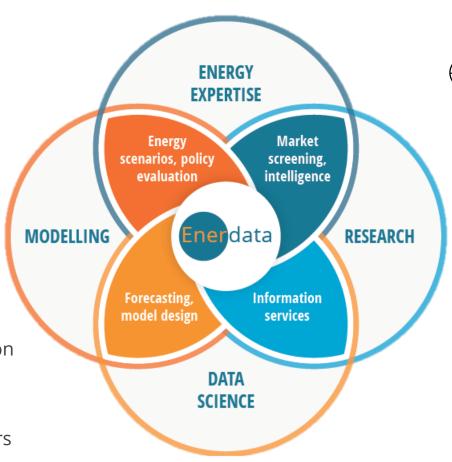
Powered by our EnerFuture scenarios derived from the POLES-Enerdata model

Since 1991, we have proven a renowned expertise in energy-climate scenario modelling services

- **Independent energy research & consulting company since 1991**
- > Expert in analysis and forecasting of global energy & climate issues
- In-house and globally recognized sectoral databases and forecasting models

- Headquartered in the Grenoble (French Alps) research cluster; a subsidiary in Singapore
- > Global reach: Clients and projects in Europe, Asia, Americas, Middle East, Africa
- **Connected** with **leading public institutions, financial and corporate actors, academia and NGO actors**

Our services – Combining fields of expertise from research, data science to modelling


Modelling

- Creation of E-C scenarios, climate alignment trajectories
- Identification of alignment pathways by sector and by country

Expert in energy / climate

- Knowledge of market drivers
- Expertise covering all energy transition pillars: mix decarbonisation, energy efficiency, sufficiency, and flexibility (assets and markets)
- Deep coverage: all energies, all sectors and 150+ countries

Market intelligence

- Market Research
- Business intelligence
- Energy market watch
- Tracking of E-C policies worldwide

Data science

- Gathering, consolidating and analysing energy data
- Market forecasts: supply, demand and prices

Agenda of the webinar

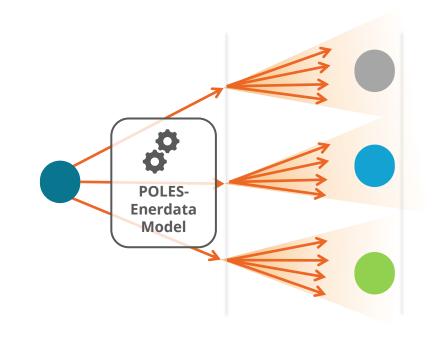
- Introduction
- **Looking back: the World is not on track...**
- ... but real progress was still made
- **Looking forward: what now?**
- **Takeaways and Q&A session**

Aurélien PEFFEN Head of Prospective & Scenarios

Joseph BON-MARDION Project Manager

Introduction

Methodological approach,


Scenario definition

Scenario construction

Starting from today, we explore different pathways to 2050 relying on varying assumptions but a common framework

Today Energy demand Activity, technological description **Energy supply Technologies Energy prices** Several markets **GHG** emissions

2050

Demand

Global & regional dynamics, fuel mix, efficiency...

Supply & Prices

Availability, self-sufficiency, trade, bills...

Sustainability

GHG emissions...

- Use macroeconomic assumptions:
 - population (UN),
 - ▶ GDP growth (IMF, CEPII, OECD)

- Apply alternative assumptions for key drivers:
 - climate and energy policies,
 - available technological options, etc.

Results in contrasted pathways

Scenario definition

Three energy-climate scenarios to explore possible futures of global energy systems

EnerBase

Continuation of existing policies and trends

Temperature increase around 3°C

EnerBlue

Achievement of new NDCs submitted up to end of 2024

Temperature increase in the 2-2.5°C range

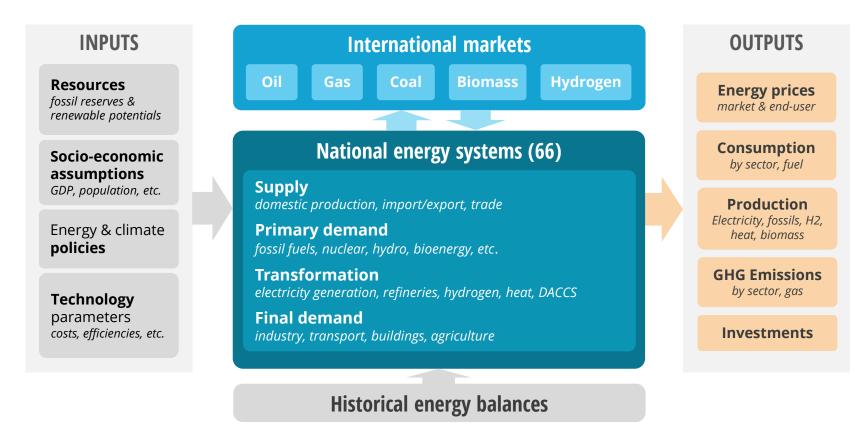
EnerGreen

Ambitious GHG emissions budget in line with the Paris Agreement

Temperature increase well below 2°C

- EnerFuture is relying on the recognised **POLES-Enerdata model**, an energy-economy-environment model of the global energy system,
- 66 countries and regions, with global coverage and annual step until 2050,
- with dedicating modelling of the individual end-use sectors, energy supply, prices and GHG emissions

PROSPECTIVE **O**UTLOOK ON L ONG-TERM ENERGY S ystems


Note: The POLES model has been initially developed by the GAEL (Grenoble Applied Economics Lab) at the University of Grenoble Alpes

The POLES-Enerdata model

The EnerFuture scenarios are produced using our POLES-Enerdata global energy model

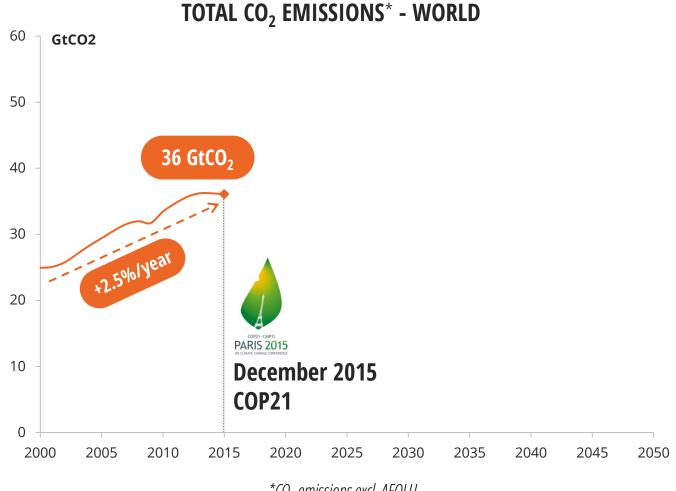
- POLES-Enerdata: Prospective Outlook on Long-term Energy Systems;
- Owned, maintained and operated by Enerdata

EnerFuture interface

Benefit from instantaneous access to POLES-Enerdata model outputs

- Annual projections to 2050 for 55 countries/aggregates
 - 3 Enerdata scenarios: EnerBase, EnerBlue, EnerGreen
 - Demand, prices and emissions forecasts for all energies at sector level
 - Power generation forecasts by fuel (both capacities and production)

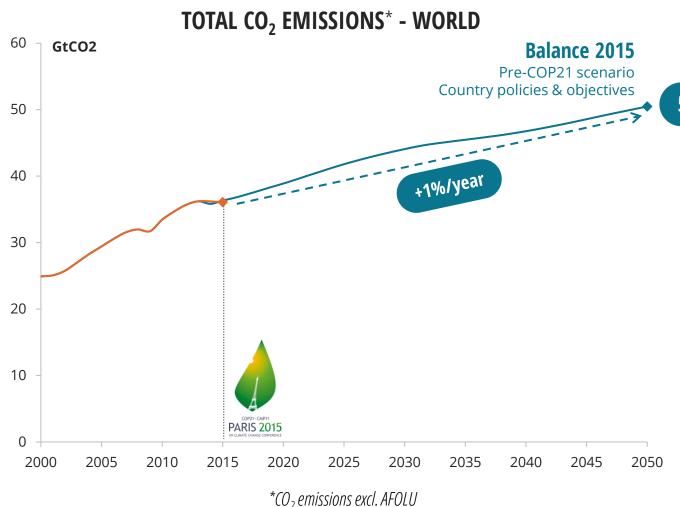
- Insightful indicators and country-level dashboards
- Intuitive online interface for visualisation, table & graph generation and data queries
- Yearly update to include latest historical statistics and developments in the energy sector
- Option: Marginal Abatement Cost Curves for CO₂ by sector and industrial branches
- Option: deep dive on energy demand with end-use level results and indicators



2 Looking back: the World is not on track... We did not live up to the Paris Agreement

Ten years ago, COP21 was starting

After long decades of rapid growth in global emissions, the whole world was in Paris to accelerate climate action


A COP aimed at reversing the trend

- Global CO₂ emissions (excl AFOLU) reached
 36 GtCO₂ in 2015, up from 25 GtCO₂ in 2000
- This corresponds to a +2.5%/y average growth

Ten years ago, COP21 was starting

After long decades of rapid growth in global emissions, the whole world was in Paris to accelerate climate action

50 GtCO₂

A COP aimed at reversing the trend

- Global CO₂ emissions (excl AFOLU) reached
 36 GtCO₂ in 2015, up from 25 GtCO₂ in 2000
- This corresponds to a +2.5%/y average growth

Insufficient country policies & objectives

- Going into COP21, existing country pledges led to a steady increase in global emissions
- Our Balance scenario 2015 showed a growth of about 1%/year in average

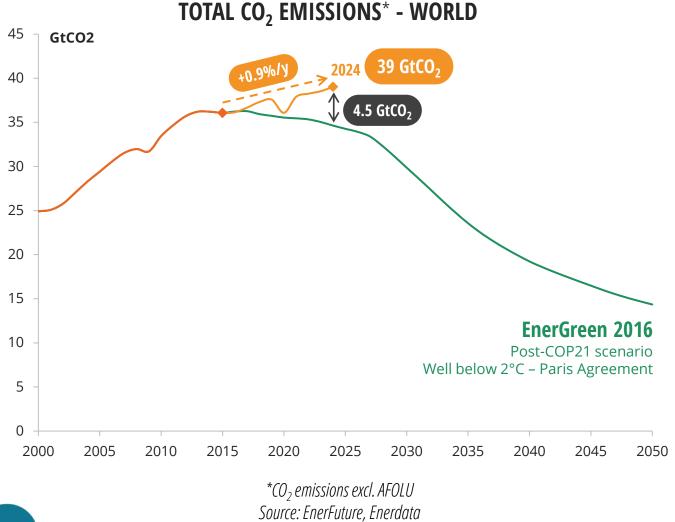
^CO₂ emissions excl. AFOLU Source: EnerFuture, Enerdata

COP21: A New Hope

On December 12th 2015, after an extra day, COP21 leads to the historic Paris Agreement

The Paris Agreement, a historic turning point

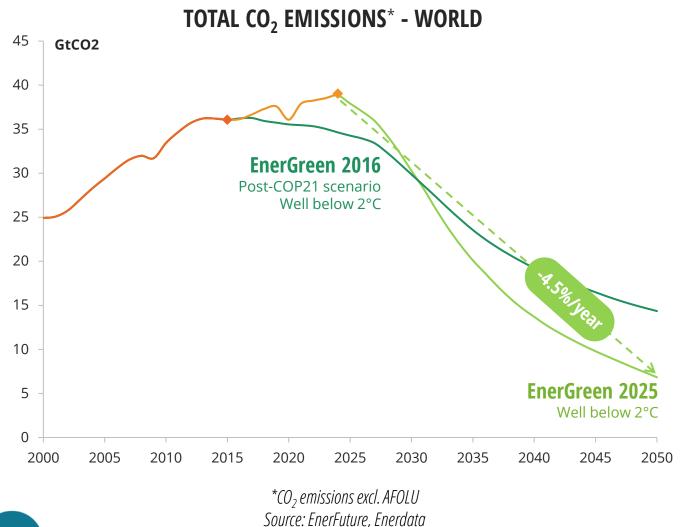
- International treaty with 195 parties
- Covering mitigation, adaptation and finance
- Goal of limiting global temperature increase to « Well below 2°C » by 2100 compared to preindustrial levels


• In 2016, our very first « Paris Agreement-compatible » scenario: EnerGreen

- EnerGreen 2016 is a scenario of substantial decrease of emissions by 2050
 - The first 10-15 years of projections see a moderate decrease, before the trend accelerates, envisioning a realistic trajectory

Ten years after, a bleak picture

Failing to start reducing our emissions, the Paris Agreement goal has become a distant dream


Emissions have kept increasing since 2015

- In 2024, they reached 39 GtCO₂, i.e. an increase of almost 1%/year in average (despite COVID)
- This is about 4.5 GtCO₂ higher than what the FnerGreen 2016 scenario envisioned

Ten years after, a bleak picture

Failing to start reducing our emissions, the Paris Agreement goal has become a distant dream

Emissions have kept increasing since 2015

- In 2024, they reached 39 GtCO₂, i.e. an increase of almost 1%/year in average (despite COVID)
- This is about 4.5 GtCO₂ higher than what the FnerGreen 2016 scenario envisioned

The « Well below 2°C » goal is becoming increasingly difficult to reach

- Our latest EnerGreen scenario (2025) shows a required 4.5%/y decrease in emissions by 2050
- The steep curve means that very strong, and immediate efforts would be necessary
- Begging the question: is the Paris Agreement goal still realistic, and hence still relevant?

What could a « well below 2°C » world look like in 2050?

EnerGreen 2050 snapshot

M

-15% Final energy demand vs. 2023

ELECTRIFICATION

食,

x2.3 Electricity share vs 2023

CLEAN ENERGY SUPPLY

Fossil fuel consumption
vs 2023

12% Efficiency gains

3%
Sufficiency gains

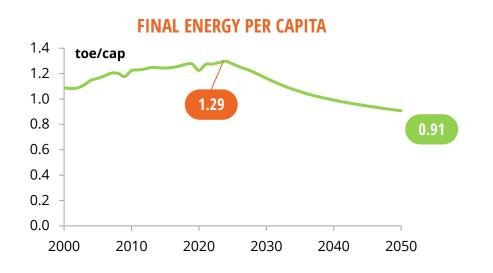
70%
Electric cars
in the fleet

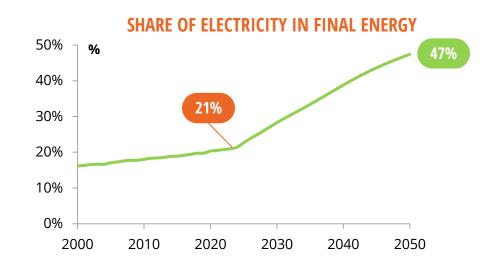
44%
Heat pumps in space heating

95% CO₂-free electricity **76%**H₂ from electrolysis

Deep dive into EnerGreen 2025

What would it concretely take to stay on track with the Paris Agreement goals?




Energy consumption:

After a continuous slight increase, average energy demand per capita should immediately start decrease, reaching -30% by 2050

Electrification:

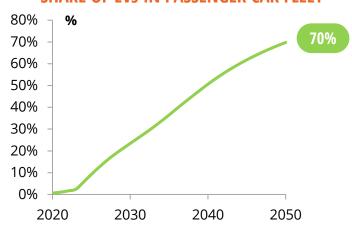
After gaining 5 points since 2000, the share of electricity in the final demand should surge by over 25 points over the next 25 years

Deep dive into EnerGreen 2025

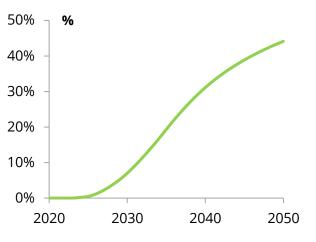
What would it concretely take to stay on track with the Paris Agreement goals?

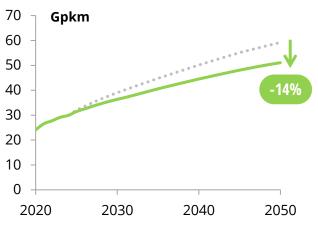
Scope: WORLD

Residential sector


- Energy efficient renovation rate to quickly reach over 2% and remain there by 2050
- Heat pumps to dominate sales of space heating equipment, and reach almost half of useful energy provided

Passenger transport sector


- Electric Vehicles to become the number one option for cars (70% of the fleet in 2050)
- Behavioural changes required to reduce passsenger traffic by almost 15% compared to a baseline



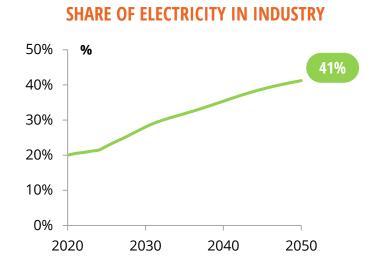
SHARE OF HEAT PUMPS IN SPACE HEATING

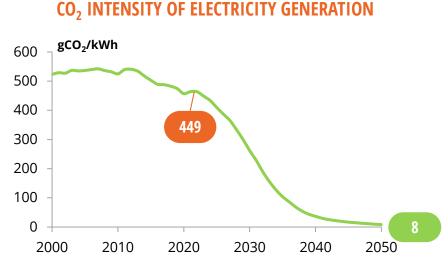
PASSENGER CAR TRAFFIC

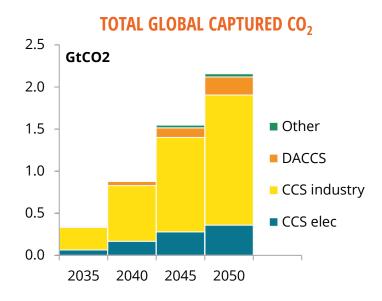
Deep dive into EnerGreen 2025

What would it concretely take to stay on track with the Paris Agreement goals?

Industry:

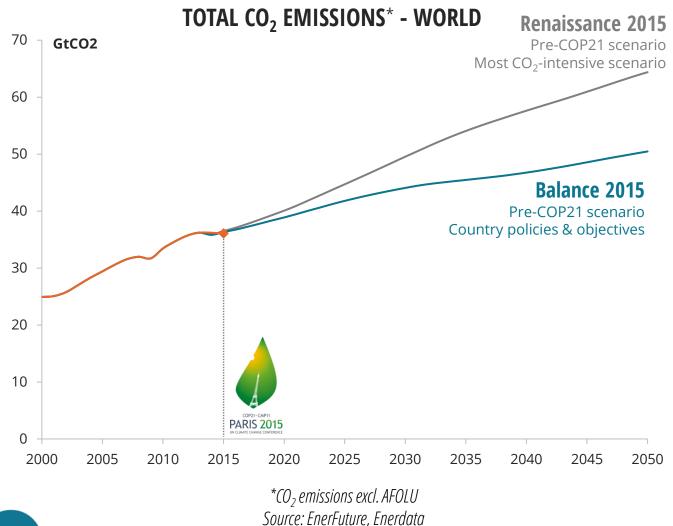

Profound structural changes necessary, e.g. with electrification of processes and development of CCS (notably for process emissions)


Electricity generation:


- Drastic decrease of emissions required for power gen, among the easier-to-abate sectors.
- A key prerequisite to decarbonise demand through eletrification

Carbon capture:

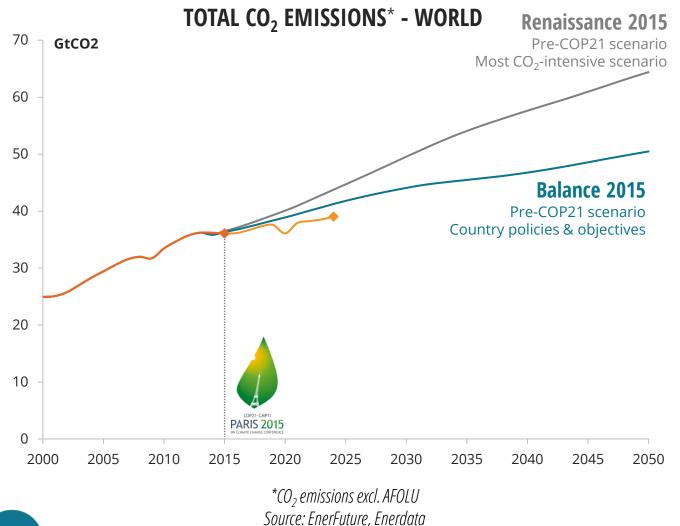
Even with immediate and strong action to mitigate emissions, significant volumes of CCS will need to be developed by 2050



3 ... but real progress was still made We have started to flatten the curve

Before COP21, carbon-intensive perspectives

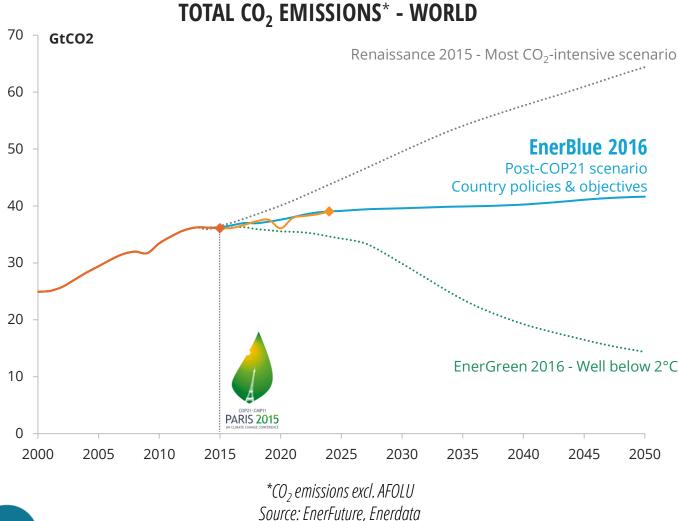
Back in early 2015, CO₂ emissions outlooks were strongly increasing with no slow down in sight



- Enerdata's pre-COP21 scenarios envisioned a steady increase in emissions:
 - Balance: central scenario accounting for country policies & pledges
 - **50 GtCO₂** in 2050, i.e. **+1%/year** over 2015-2050
 - Renaissance: most CO₂-heavy scenario, with a lack of climate commitments and a renewed push for fossil fuels
 - **64 GtCO**₂ in 2050, i.e. **+1.5%/year** over 2015-2050

Before COP21, carbon-intensive perspectives

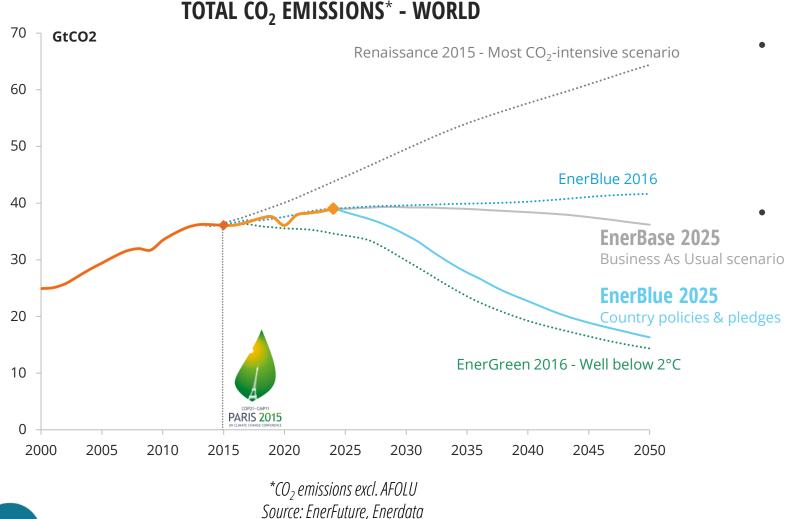
Back in early 2015, CO₂ emissions outlooks were strongly increasing with no slow down in sight



- Enerdata's pre-COP21 scenarios envisioned a steady increase in emissions:
 - Balance: central scenario accounting for country policies & pledges
 - **50 GtCO₂** in 2050, i.e. **+1%/year** over 2015-2050
 - Renaissance: most CO₂-heavy scenario, with a lack of climate commitments and a renewed push for fossil fuels
 - **64 GtCO₂** in 2050, i.e. **+1.5%/year** over 2015-2050
- Current realised emissions are actually not increasing as fast:
 - In 2024, CO₂ emissions stood at 39 GtCO₂
 - 2 GtCO₂ below Balance
 - 5 GtCO₂ below Renaissance
 - Efforts towards climate change mitigation are making a difference

A change in paradigms

The Paris Agreement deeply changed our common vision of the possible futures, and had lasting impacts on countries' ambitions


Emissions in line with EnerBlue 2016

- Up to today, emissions have followed our EnerBlue 2016 scenario
- i.e. what countries had pledged and implemented following COP21

A change in paradigms

The Paris Agreement deeply changed our common vision of the possible futures, and had lasting impacts on countries' ambitions

Emissions in line with EnerBlue 2016

- Up to today, emissions have followed our EnerBlue 2016 scenario
- i.e. what countries had pledged and implemented following COP21

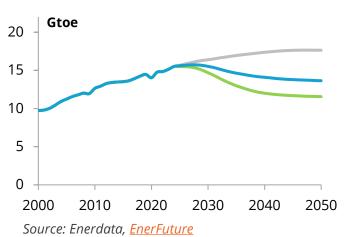
Looking forward: emissions peak in sight?

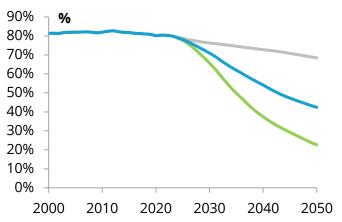
- Our recent scenarios (early 2025) show a clearly higher ambition than 10 years ago
- With the progressive NDC & pledges annoucements, the outlook has drastically changed
- An emission peak is no longer a distant dream now, it could be achieved within 10 years

The merits of the Paris agreement

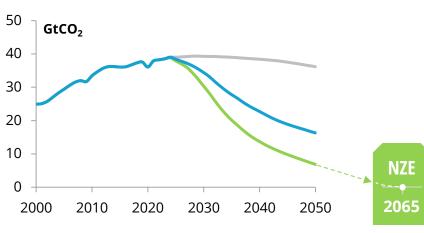
The Paris Agreement constitutes one of the foundations of climate action

- **Raised global awareness**
 - Clear impacts on countries' ambitions & climate policies
- A turning point in the approach and multiple first-times:
 - First universal agreement, a common shared goal of "well below 2°C" and legally binding
 - Commitment from all countries through **NDCs**, using a bottom-up approach, subject to review every five years
 - Implementation of the "loss and damage" principle (irreversible impacts of climate change and the need to assist vulnerable countries)
 - A **strong signal** to markets and investors, and a boost for the energy transition: "clean energy is the future"


Looking forward: what now? An uncertain future lays ahead for climate mitigation


Global key indicators

Main results from our 3 scenarios at a glance


PRIMARY ENERGY CONSUMPTION

SHARE OF FOSSILS IN ENERGY MIX

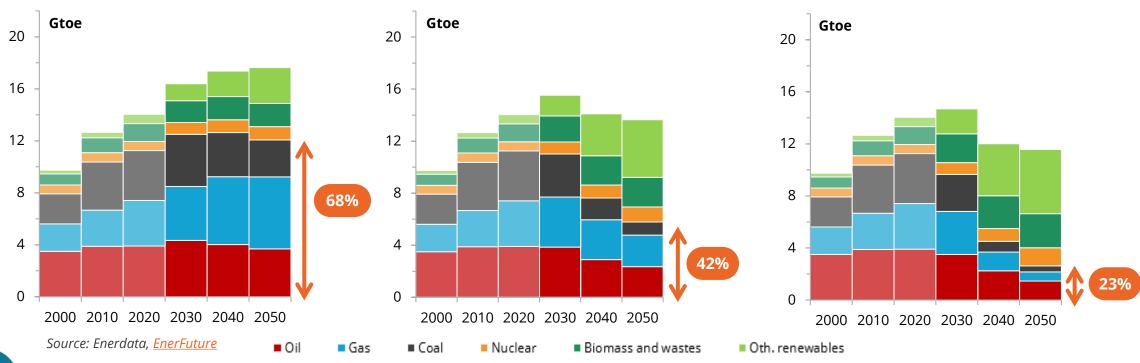
Average evolution (%/y)	2011-2023		2023-2050)
		EnerBase	EnerBlue	EnerGreen
Carbon intensity CO ₂ emissions released to produce one unit of gross domestic product (GDP)	-2.1%	-2.8%	-5.6%	-8.6%
Energy intensity of GDP (final) Energy consumption necessary to produce one unit of gross domestic product (GDP)	-1.5%	-1.8%	-2.5%	-3.1%
Carbon factor CO ₂ emissions released for an average unit of energy consumption	-0.4%	-0.8%	-2.8%	-5.3%

Source: Enerdata, EnerFuture

Global primary energy mix

How quick do we shift away from fossil fuels depending on our global climate ambition?

EnerBase

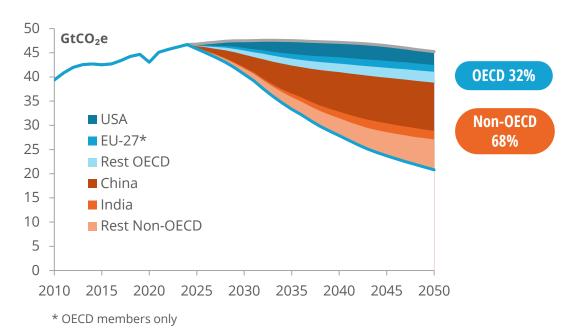

In a **BAU** scenario, fossil fuels keep growing and account for 12 Gtoe or 68% by 2050

EnerBlue

Announced policies and objectives allow to quickly curb fossil fuel consumption, limiting it to 6 Gtoe or 42% by 2050

EnerGreen

To obtain a trajectory compatible with **below 2°C**, fossil fuels should rapidly decrease to 3 Gtoe or 23% by 2050



Current pledges

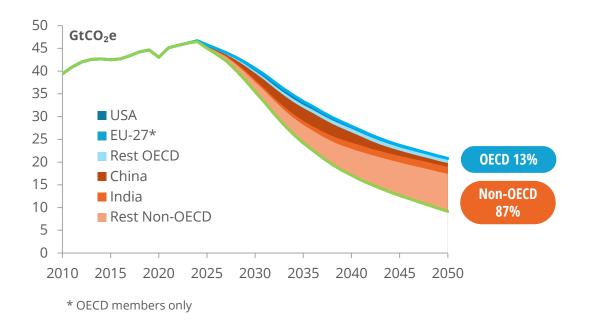
To what extent regions contribute to mitigation efforts according to their pledges?

GHG EMISSION REDUCTIONS BY REGION

Cumulated reductions, 2023-2050			
USA	62 GtCO ₂ e	15.5%	
EU-27*	26 GtCO ₂ e	6.5%	
Rest OECD	38 GtCO ₂ e	10%	
China	162 GtCO ₂ e	41%	
India	27 GtCO ₂ e	7%	
Rest Non-OECD	80 GtCO ₂ e	20%	

GHG emissions excl. international transport, excl. AFOLU

According to currently announced policies and pledges, non-OECD countries should account for about 70% of cumulative emission reductions by 2050.


China alone represents more than a third of intended emission reductions, with around 162 GtCO₂e less in EnerBlue compared to EnerBase – although its GHG emissions per capita remain substantially higher than the global average.

Ambition gap

Over 80% of additional decarbonisation efforts in EnerGreen should be done by non-OECD countries

GHG EMISSION REDUCTIONS BY REGION

Cumulated reductions, 2023-2050		
USA	10 GtCO ₂ e	5%
EU-27*	3 GtCO ₂ e	1%
Rest OECD	16 GtCO ₂ e	7%
China	41 GtCO ₂ e	19%
India	25 GtCO ₂ e	12%
Rest Non-OECD	122 GtCO ₂ e	56%

GHG emissions excl. international transport, excl. AFOLU

The gap between current NDCs and a below 2°C scenario is mostly concentrated in Non-OECD countries, with China alone accounting for 20% of the total ambition gap

The question of **global climate finance** is key: enabling developing countries to access financing in order to limit their emissions while continuing to develop is a must

Unfavourable context

A decline in climate commitments, especially from the US

- The withdrawal of US from the Paris agreement 20 January 2025 Trump's first day in office, officially out in January 2026
- US support to environmentally harmful policies "drill baby, drill"

W	Development aid	dropping b	ov the US and	European countries
	Development and	an obbing v	y and ob and	Laropean countries

US	-80% -\$35 billion	Foreign assistance USAID shut down	
G7	-28%	2026 aid level vs. 2024	
UN	-40%	2025 humanitarian funding vs. 2024	
EU	-€2.2 billion	aid to be cut by 2027	

Impacts on Nationally Determined Contributions (NDCs): conditional & more

Unfavourable context

Increased fragility of cooperation

- Competition US Vs China for the world economic leadership
- American protectionism, Chinese slowdown
- Increasing tension between countries which derives in part from climate change consequences (e.g. water access) or energy transition (mineral resources, rare earth materials, etc.).

30 conflicts in the 90' \rightarrow 120 conflicts today

- "The world is clearly not on track to meet internationally agreed climate goals and is facing a challenging set of economic and geopolitical conditions" WEO, 2025

Security concern on top of governments' priority

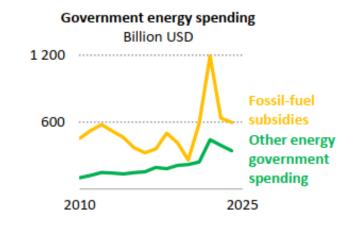
Climate issues, a lower priority?

Difficulties reflected by IEA reintroducing its Current Policies Scenario (CPS) > 2 °C

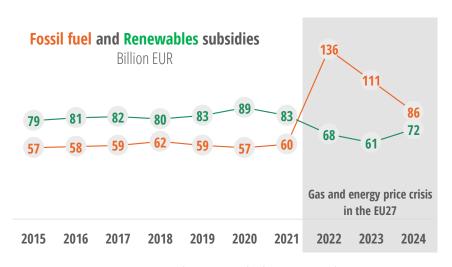
Unfavourable context

The strength of major economies subject to short-term influences

Sensitivity to economic conditions


Gas/energy prices

Dependence on fossil fuels


Fossil fuel subsidies

Globally

Source: IEA, WEO 2025

EU27

Sources: European Commission, Study on energy subsidies, 2024. Enerdata: 2024 estimate

After the COP30 in Belém

Key points to remember

Some successes

- Tripling of adaptation funding
- Creation of the Tropical Forest Forever Facility
- Recognition of Indigenous Rights
- Launch of climate trade dialogues
- Roadmap to strengthen the Paris Agreement
- The concept of a **just transition** mentioned in the agreement
- Progress on the issue of climate misinformation

But major limitations X

- Concrete decisions on fossils fuels have been postponed
 - no binding phase-out plan
 - a step back vs. COP28!
- Climate finance still insufficient
- Deforestation: non-binding commitments
- Lack of collective ambition on NDCs

Conclusions & discussion

- The Paris Agreement goal, "well below 2°C", is becoming unrealistic. Should we collectively set a new, less ambitious target?
 - Would a new & more realistic objective better support climate action?
 - Preventing the "it's too late, it's over" discouraging impression
 - Providing a more concrete roadmap
 - Or would we then lower our efforts and miss a less ambitious target?
 - Is there value in saying that we are far from the goal, does this stimulate efforts?
- Monitoring and praising the progress made is key
 - Every effort/action is a step forward in the right direction
 - The climate issue is not an *All or Nothing* problem, we must fight this human bias
- In the current highly uncertain context, more important than ever to keep the long-term perspectives in mind
 - Uncertainties naturally tend to shift the focus to the very short-term
 - However, the longer-term roadmap should not be completely occulted

Takeaways and Q&A Wrapping up the analysis

- Ten years after the Paris Agreement, **too little too late**:
 - CO₂ emissions have failed to peak, let alone start decreasing, far from the initial COP21 goal
 - The well below 2°C target is increasingly unrealistic
- However, mitigation efforts made a real difference:
 - Observed emissions have increased substantially less than envisioned before COP21
 - Perspectives to 2050 have drastically improved since
- This should be an encouraging signal to continue the efforts, however current times are troubled:
 - An unfavourable context: trade wars, drop of development aid, US stance
 - o COP30 failing to regain traction for climate action

HELPING YOU SHAPE THE ENERGY TRANSITION

About Enerdata:

Enerdata is an independent research company that specialises in the analysis and forecasting of energy and climate issues. We do this at a variety of different geographic and business / sector levels.

Leveraging our globally recognised databases, business intelligence processes, and prospective models, we assist our clients – which include companies, investors, and public authorities around the world – in designing their policies, strategies, and business plans.

Enerdata

EnerFuture 2025 GLOBAL ENERGY SCENARIOS THROUGH 2050

PUBLICATION AUTHORS

Aurélien PEFFENProduct Manager

Perrine MEZIAT-BURDIN

Energy Analyst

Want more details?
ACCESS THE FULL PUBLICATION

CONTACT

research@enerdata.net
http://www.enerdata.net